IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v91y2014icp37-43.html
   My bibliography  Save this article

Trade-off between learning and exploitation: The Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural evolution

Author

Listed:
  • Wakano, Joe Yuichiro
  • Miura, Chiaki

Abstract

Inheritance of culture is achieved by social learning and improvement is achieved by individual learning. To realize cumulative cultural evolution, social and individual learning should be performed in this order in one’s life. However, it is not clear whether such a learning schedule can evolve by the maximization of individual fitness. Here we study optimal allocation of lifetime to learning and exploitation in a two-stage life history model under a constant environment. We show that the learning schedule by which high cultural level is achieved through cumulative cultural evolution is unlikely to evolve as a result of the maximization of individual fitness, if there exists a trade-off between the time spent in learning and the time spent in exploiting the knowledge that has been learned in earlier stages of one’s life. Collapse of a fully developed culture is predicted by a game-theoretical analysis where individuals behave selfishly, e.g., less learning and more exploiting. The present study suggests that such factors as group selection, the ability of learning-while-working (“on the job training†), or environmental fluctuation might be important in the realization of rapid and cumulative cultural evolution that is observed in humans.

Suggested Citation

  • Wakano, Joe Yuichiro & Miura, Chiaki, 2014. "Trade-off between learning and exploitation: The Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 91(C), pages 37-43.
  • Handle: RePEc:eee:thpobi:v:91:y:2014:i:c:p:37-43
    DOI: 10.1016/j.tpb.2013.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580913000841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    2. Aoki, Kenichi & Wakano, Joe Yuichiro & Lehmann, Laurent, 2012. "Evolutionarily stable learning schedules and cumulative culture in discrete generation models," Theoretical Population Biology, Elsevier, vol. 81(4), pages 300-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mullon, Charles & Lehmann, Laurent, 2017. "Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission," Theoretical Population Biology, Elsevier, vol. 116(C), pages 33-46.
    2. Ohtsuki, Hisashi & Wakano, Joe Yuichiro & Kobayashi, Yutaka, 2017. "Inclusive fitness analysis of cumulative cultural evolution in an island-structured population," Theoretical Population Biology, Elsevier, vol. 115(C), pages 13-23.
    3. Kobayashi, Yutaka & Ohtsuki, Hisashi & Wakano, Joe Y., 2016. "Population size vs. social connectedness — A gene-culture coevolutionary approach to cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 111(C), pages 87-95.
    4. Ram, Yoav & Liberman, Uri & Feldman, Marcus W., 2019. "Vertical and oblique cultural transmission fluctuating in time and in space," Theoretical Population Biology, Elsevier, vol. 125(C), pages 11-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    2. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    5. Aslihan Akdeniz & Matthijs van Veelen, 2019. "The cancellation effect at the group level," Tinbergen Institute Discussion Papers 19-073/I, Tinbergen Institute.
    6. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Lessard, Sabin & Lahaie, Philippe, 2009. "Fixation probability with multiple alleles and projected average allelic effect on selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 266-277.
    8. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    9. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    10. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.
    11. Hao, Weijuan & Hu, Yuhan, 2024. "The implications of deep cooperation strategy for the evolution of cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    12. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    13. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    15. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    16. Qiguang An & Hongfeng Guo & Yating Zheng, 2022. "On Robust Stability and Stabilization of Networked Evolutionary Games with Time Delays," Mathematics, MDPI, vol. 10(15), pages 1-12, July.
    17. Utsumi, Shinobu & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Sabin Lessard, 2011. "Effective Game Matrix and Inclusive Payoff in Group-Structured Populations," Dynamic Games and Applications, Springer, vol. 1(2), pages 301-318, June.
    19. Mayuko Nakamaru & Akira Yokoyama, 2014. "The Effect of Ostracism and Optional Participation on the Evolution of Cooperation in the Voluntary Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    20. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:91:y:2014:i:c:p:37-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.