IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v82y2012i1p22-28.html
   My bibliography  Save this article

Clines with partial panmixia in an unbounded unidimensional habitat

Author

Listed:
  • Nagylaki, Thomas

Abstract

In geographically structured populations, global panmixia can be regarded as the limiting case of long-distance migration. The effect of incorporating partial panmixia into diallelic single-locus clines maintained by migration and selection in an unbounded unidimensional habitat is investigated. Migration and selection are both weak. The former is homogenous and isotropic; the latter has no dominance. The population density is uniform. A simple, explicit formula is derived for the maximum value β0 of the scaled panmictic rate β for which a cline exists. The former depends only on the asymptotic values of the scaled selection coefficient. If the two alleles have the same average selection coefficient, there exists a unique, globally asymptotically stable cline for every β≥0. Otherwise, if β≥β0, the allele with the greater average selection coefficient is ultimately fixed. If β<β0, there exists a unique, globally asymptotically stable cline, and some polymorphism is retained even infinitely far from its center. The gene frequencies at infinity are determined by a continuous-time, two-deme migration-selection model. An explicit expression is deduced for the monotone cline in a step-environment. These results differ fundamentally from those for the classical cline without panmixia.

Suggested Citation

  • Nagylaki, Thomas, 2012. "Clines with partial panmixia in an unbounded unidimensional habitat," Theoretical Population Biology, Elsevier, vol. 82(1), pages 22-28.
  • Handle: RePEc:eee:thpobi:v:82:y:2012:i:1:p:22-28
    DOI: 10.1016/j.tpb.2012.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912000329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagylaki, Thomas, 2012. "Clines with partial panmixia," Theoretical Population Biology, Elsevier, vol. 81(1), pages 45-68.
    2. Nagylaki, Thomas, 2009. "Polymorphism in multiallelic migration–selection models with dominance," Theoretical Population Biology, Elsevier, vol. 75(4), pages 239-259.
    3. Nagylaki, Thomas, 2011. "The influence of partial panmixia on neutral models of spatial variation," Theoretical Population Biology, Elsevier, vol. 79(1), pages 19-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagylaki, Thomas & Su, Linlin & Alevy, Ian & Dupont, Todd F., 2014. "Clines with partial panmixia in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 95(C), pages 24-32.
    2. Forien, Raphaël, 2019. "Gene flow across geographical barriers — scaling limits of random walks with obstacles," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3748-3773.
    3. Nagylaki, Thomas, 2016. "Clines with partial panmixia across a geographical barrier," Theoretical Population Biology, Elsevier, vol. 109(C), pages 28-43.
    4. Nagylaki, Thomas & Zeng, Kai, 2014. "Clines with complete dominance and partial panmixia in an unbounded unidimensional habitat," Theoretical Population Biology, Elsevier, vol. 93(C), pages 63-74.
    5. Nagylaki, Thomas & Zeng, Kai, 2016. "Clines with partial panmixia across a geographical barrier in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 110(C), pages 1-11.
    6. Nagylaki, Thomas & Su, Linlin & Dupont, Todd F., 2019. "Uniqueness and multiplicity of clines in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 130(C), pages 106-131.
    7. Geroldinger, Ludwig & Bürger, Reinhard, 2015. "Clines in quantitative traits: The role of migration patterns and selection scenarios," Theoretical Population Biology, Elsevier, vol. 99(C), pages 43-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagylaki, Thomas & Zeng, Kai, 2014. "Clines with complete dominance and partial panmixia in an unbounded unidimensional habitat," Theoretical Population Biology, Elsevier, vol. 93(C), pages 63-74.
    2. Nagylaki, Thomas, 2012. "Clines with partial panmixia," Theoretical Population Biology, Elsevier, vol. 81(1), pages 45-68.
    3. Nagylaki, Thomas & Su, Linlin & Alevy, Ian & Dupont, Todd F., 2014. "Clines with partial panmixia in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 95(C), pages 24-32.
    4. Nagylaki, Thomas, 2016. "Clines with partial panmixia across a geographical barrier," Theoretical Population Biology, Elsevier, vol. 109(C), pages 28-43.
    5. Geroldinger, Ludwig & Bürger, Reinhard, 2015. "Clines in quantitative traits: The role of migration patterns and selection scenarios," Theoretical Population Biology, Elsevier, vol. 99(C), pages 43-66.
    6. Nagylaki, Thomas, 2015. "Dying on the way: The influence of migrational mortality on clines," Theoretical Population Biology, Elsevier, vol. 101(C), pages 54-60.
    7. Peischl, Stephan, 2010. "Dominance and the maintenance of polymorphism in multiallelic migration-selection models with two demes," Theoretical Population Biology, Elsevier, vol. 78(1), pages 12-25.
    8. Novak, Sebastian, 2011. "The number of equilibria in the diallelic Levene model with multiple demes," Theoretical Population Biology, Elsevier, vol. 79(3), pages 97-101.
    9. Nagylaki, Thomas & Zeng, Kai, 2016. "Clines with partial panmixia across a geographical barrier in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 110(C), pages 1-11.
    10. Forien, Raphaël, 2019. "Gene flow across geographical barriers — scaling limits of random walks with obstacles," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3748-3773.
    11. Nagylaki, Thomas, 2009. "Evolution under the multilocus Levene model without epistasis," Theoretical Population Biology, Elsevier, vol. 76(3), pages 197-213.
    12. Bürger, Reinhard, 2010. "Evolution and polymorphism in the multilocus Levene model with no or weak epistasis," Theoretical Population Biology, Elsevier, vol. 78(2), pages 123-138.
    13. Nagylaki, Thomas, 2015. "Dying on the way: The influence of migrational mortality on neutral models of spatial variation," Theoretical Population Biology, Elsevier, vol. 99(C), pages 67-75.
    14. Nagylaki, Thomas & Su, Linlin & Dupont, Todd F., 2019. "Uniqueness and multiplicity of clines in an environmental pocket," Theoretical Population Biology, Elsevier, vol. 130(C), pages 106-131.
    15. Akerman, Ada & Bürger, Reinhard, 2014. "The consequences of dominance and gene flow for local adaptation and differentiation at two linked loci," Theoretical Population Biology, Elsevier, vol. 94(C), pages 42-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:82:y:2012:i:1:p:22-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.