IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v75y2009i4p312-319.html
   My bibliography  Save this article

Drawing inferences about the coancestry coefficient

Author

Listed:
  • Samanta, Suvajit
  • Li, Yi-Ju
  • Weir, Bruce S.

Abstract

The coancestry coefficient, also known as the population structure parameter, is of great interest in population genetics. It can be thought of as the intraclass correlation of pairs of alleles within populations and it can serve as a measure of genetic distance between populations. For a general class of evolutionary models it determines the distribution of allele frequencies among populations. Under more restrictive models it can be regarded as the probability of identity by descent of any pair of alleles at a locus within a random mating population. In this paper we review estimation procedures that use the method of moments or are maximum likelihood under the assumption of normally distributed allele frequencies. We then consider the problem of testing hypotheses about this parameter. In addition to parametric and non-parametric bootstrap tests we present an asymptotically-distributed chi-square test. This test reduces to the contingency-table test for equal sample sizes across populations. Our new test appears to be more powerful than previous tests, especially for loci with multiple alleles. We apply our methods to HapMap SNP data to confirm that the coancestry coefficient for humans is strictly positive.

Suggested Citation

  • Samanta, Suvajit & Li, Yi-Ju & Weir, Bruce S., 2009. "Drawing inferences about the coancestry coefficient," Theoretical Population Biology, Elsevier, vol. 75(4), pages 312-319.
  • Handle: RePEc:eee:thpobi:v:75:y:2009:i:4:p:312-319
    DOI: 10.1016/j.tpb.2009.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058090900032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Nicholson & Albert V. Smith & Frosti Jónsson & Ómar Gústafsson & Kári Stefánsson & Peter Donnelly, 2002. "Assessing population differentiation and isolation from single‐nucleotide polymorphism data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 695-715, October.
    2. Neerchal, Nagaraj K. & Morel, Jorge G., 2005. "An improved method for the computation of maximum likeliood estimates for multinomial overdispersion models," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 33-43, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leviyang, Sivan & Hamilton, Matthew B., 2011. "Properties of Weir and Cockerham’s Fst estimators and associated bootstrap confidence intervals," Theoretical Population Biology, Elsevier, vol. 79(1), pages 39-52.
    2. Tvedebrink, Torben, 2010. "Overdispersion in allelic counts and θ-correction in forensic genetics," Theoretical Population Biology, Elsevier, vol. 78(3), pages 200-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Sonjoy & Spall, James C. & Ghanem, Roger, 2010. "Efficient Monte Carlo computation of Fisher information matrix using prior information," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 272-289, February.
    2. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    3. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    4. Hobolth, Asger & Siren, Jukka, 2016. "The multivariate Wright–Fisher process with mutation: Moment-based analysis and inference using a hierarchical Beta model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 36-50.
    5. Hernández-Veleros, Zeus Salvador, 2010. "Heterogeneous growth cycles/Ciclos de crecimiento heterogéneo," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 625-650, Diciembre.
    6. Mathieu Gautier & Toby Dylan Hocking & Jean-Louis Foulley, 2010. "A Bayesian Outlier Criterion to Detect SNPs under Selection in Large Data Sets," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-16, August.
    7. Tvedebrink, Torben, 2010. "Overdispersion in allelic counts and θ-correction in forensic genetics," Theoretical Population Biology, Elsevier, vol. 78(3), pages 200-210.
    8. Soraggi, Samuele & Wiuf, Carsten, 2019. "General theory for stochastic admixture graphs and F-statistics," Theoretical Population Biology, Elsevier, vol. 125(C), pages 56-66.
    9. Andrew M. Raim & Nagaraj K. Neerchal & Jorge G. Morel, 2017. "An approximation to the information matrix of exponential family finite mixtures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 333-364, April.
    10. Rongwei Fu & Dipak K. Dey & Kent E. Holsinger, 2011. "A Beta-Mixture Model for Assessing Genetic Population Structure," Biometrics, The International Biometric Society, vol. 67(3), pages 1073-1082, September.
    11. Corsini, Noemi & Viroli, Cinzia, 2022. "Dealing with overdispersion in multivariate count data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    12. Davison, D. & Pritchard, J.K. & Coop, G., 2009. "An approximate likelihood for genetic data under a model with recombination and population splitting," Theoretical Population Biology, Elsevier, vol. 75(4), pages 331-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:75:y:2009:i:4:p:312-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.