IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v74y2008i4p311-323.html
   My bibliography  Save this article

Can possible evolutionary outcomes be determined directly from the population dynamics?

Author

Listed:
  • Hoyle, Andrew
  • Bowers, Roger G.

Abstract

Traditionally, to determine the possible evolutionary behaviour of an ecological system using adaptive dynamics, it is necessary to calculate the fitness and its derivatives at a singular point. We investigate the claim that the possible evolutionary behaviour can be predicted directly from the population dynamics, without the need for calculation, by applying three criteria — one based on the form of the density dependent rates and two on the role played by the evolving parameters. Taking a general continuous time model, with broad ecological range, we show that the claim is true. Initially, we assume that individuals enter in class 1 and move through population classes sequentially; later we relax these assumptions and find that the criteria still apply. However, when we consider models where the evolving parameters appear non-linearly in the dynamics, we find some aspects of the criteria fail; useful but weaker results on possible evolutionary behaviour now apply.

Suggested Citation

  • Hoyle, Andrew & Bowers, Roger G., 2008. "Can possible evolutionary outcomes be determined directly from the population dynamics?," Theoretical Population Biology, Elsevier, vol. 74(4), pages 311-323.
  • Handle: RePEc:eee:thpobi:v:74:y:2008:i:4:p:311-323
    DOI: 10.1016/j.tpb.2008.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580908000944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.A.J. Metz & S.D. Mylius & O. Diekmann, 1996. "When Does Evolution Optimize? On the Relation Between Types of Density Dependence and Evolutionarily Stable Life History Parameters," Working Papers wp96004, International Institute for Applied Systems Analysis.
    2. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    2. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    3. Han, Xiaozhuo & Chen, Baoying & Hui, Cang, 2016. "Symmetry breaking in cyclic competition by niche construction," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 66-78.
    4. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    5. M. Heino, 1997. "Evolution of Mixed Reproductive Strategies in Simple Life-History Models," Working Papers ir97063, International Institute for Applied Systems Analysis.
    6. Johansson, Jacob & Ripa, Jörgen & Kuckländer, Nina, 2010. "The risk of competitive exclusion during evolutionary branching: Effects of resource variability, correlation and autocorrelation," Theoretical Population Biology, Elsevier, vol. 77(2), pages 95-104.
    7. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    8. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    9. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    10. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    11. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    12. Gil Jorge Barros Henriques & Koichi Ito & Christoph Hauert & Michael Doebeli, 2021. "On the importance of evolving phenotype distributions on evolutionary diversification," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-21, February.
    13. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    14. Cook, James N. & Oono, Y., 2010. "Competitive localization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1849-1860.
    15. G. Meszena & J.A.J. Metz, 1999. "Species Diversity and Population Regulation: The Importance of Environmental Feedback Dimensionality," Working Papers ir99045, International Institute for Applied Systems Analysis.
    16. J. Ylikarjula & M. Heino & U. Dieckmann, 1999. "Ecology and Adaptation of Stunted Growth in Fish," Working Papers ir99050, International Institute for Applied Systems Analysis.
    17. M. Heino & J.A.J. Metz & V. Kaitala, 1996. "Evolution of Mixed Maturation Strategies in Semelparous Life-histories: the Crucial Role of Dimensionality of Feedback Environment," Working Papers wp96126, International Institute for Applied Systems Analysis.
    18. Witting, Lars, 2017. "The natural selection of metabolism and mass selects allometric transitions from prokaryotes to mammals," Theoretical Population Biology, Elsevier, vol. 117(C), pages 23-42.
    19. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    20. Troost, T.A. & Kooi, B.W. & Kooijman, S.A.L.M., 2007. "Bifurcation analysis of ecological and evolutionary processes in ecosystems," Ecological Modelling, Elsevier, vol. 204(1), pages 253-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:74:y:2008:i:4:p:311-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.