IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i4p517-528.html
   My bibliography  Save this article

A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution

Author

Listed:
  • Parvinen, Kalle
  • Metz, Johan A.J.

Abstract

Many studies of evolutionarily stable strategies (ESS) for technical reasons make the simplification that reproduction is clonal. A post-hoc justification is that in the simplest eco-evolutionary models more realistic genetic assumptions, such as haploid sexual or diploid sexual cases, yield results compatible with the clonal ones. For metapopulations the technical reasons were even more poignant thanks to the lack of accessible fitness proxies for the diploid case. However, metapopulations are also precisely the sort of ecological backdrop for which one expect discrepancies between the evolutionary outcomes derived from clonal reproduction and diploid genetics, because substantially many mutant homozygotes appear locally even though the mutant is rare globally. In this paper we devise a fitness proxy applicable to the haploid sexual and diploid sexual case, in the style of Metz and Gyllenberg [Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B 268, 499–508], that can cope with local population fluctuations due to environmental and demographic stochasticity. With the use of this fitness proxy we find that in dispersal evolution the studied clonal model is equivalent with the haploid sexual model, and that there are indeed many differences between clonal and diploid ESS dispersal rates. In a homogenous landscape the discrepancy is but minor (less than 2%), but the situation is different in a heterogeneous landscape: Not only is the quantitative discrepancy between the two types of ESSs appreciable (around 10%–20%), but more importantly, at the same parameter values, evolutionarily stability properties may differ. It is possible, that the singular strategy is evolutionarily stable in the clonal case but not in the diploid case, and vice versa.

Suggested Citation

  • Parvinen, Kalle & Metz, Johan A.J., 2008. "A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution," Theoretical Population Biology, Elsevier, vol. 73(4), pages 517-528.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:4:p:517-528
    DOI: 10.1016/j.tpb.2008.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580908000178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parvinen, Kalle, 2013. "Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations," Theoretical Population Biology, Elsevier, vol. 85(C), pages 12-19.
    2. Massol, François & Calcagno, Vincent & Massol, Julien, 2009. "The metapopulation fitness criterion: Proof and perspectives," Theoretical Population Biology, Elsevier, vol. 75(2), pages 183-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassar, Elma & Pardoux, Etienne, 2019. "Small jumps asymptotic of the moving optimum Poissonian SDE," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2320-2340.
    2. Joëlle Noailly, 2008. "Coevolution of economic and ecological systems," Journal of Evolutionary Economics, Springer, vol. 18(1), pages 1-29, February.
    3. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    4. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    5. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    6. Peña, Jorge & González-Forero, Mauricio, 2020. "Eusociality through conflict dissolution via maternal reproductive specialization," IAST Working Papers 20-110, Institute for Advanced Study in Toulouse (IAST).
    7. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    8. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    9. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    10. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    11. Hammerstein, Peter & Leimar, Olof, 2015. "Evolutionary Game Theory in Biology," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Durrett, Rick & Mayberry, John, 2010. "Evolution in predator-prey systems," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1364-1392, July.
    13. Johansson, Jacob & Ripa, Jörgen & Kuckländer, Nina, 2010. "The risk of competitive exclusion during evolutionary branching: Effects of resource variability, correlation and autocorrelation," Theoretical Population Biology, Elsevier, vol. 77(2), pages 95-104.
    14. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    15. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    16. Wu, Jiabin, 2017. "Political institutions and the evolution of character traits," Games and Economic Behavior, Elsevier, vol. 106(C), pages 260-276.
    17. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    18. Amit Vutha & Martin Golubitsky, 2015. "Normal Forms and Unfoldings of Singular Strategy Functions," Dynamic Games and Applications, Springer, vol. 5(2), pages 180-213, June.
    19. Fritsch, Coralie & Campillo, Fabien & Ovaskainen, Otso, 2017. "A numerical approach to determine mutant invasion fitness and evolutionary singular strategies," Theoretical Population Biology, Elsevier, vol. 115(C), pages 89-99.
    20. Benjamin Wölfl & Hedy te Rietmole & Monica Salvioli & Artem Kaznatcheev & Frank Thuijsman & Joel S. Brown & Boudewijn Burgering & Kateřina Staňková, 2022. "The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer," Dynamic Games and Applications, Springer, vol. 12(2), pages 313-342, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:4:p:517-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.