IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp76-88.html
   My bibliography  Save this article

The grapheme-valued Wright–Fisher diffusion with mutation

Author

Listed:
  • Greven, Andreas
  • den Hollander, Frank
  • Klimovsky, Anton
  • Winter, Anita

Abstract

In Athreya et al. (2021), models from population genetics were used to define stochastic dynamics in the space of graphons arising as continuum limits of dense graphs. In the present paper we exhibit an example of a simple neutral population genetics model for which this dynamics is a Markovian diffusion that can be characterized as the solution of a martingale problem. In particular, we consider a Markov chain in the space of finite graphs that resembles a Moran model with resampling and mutation. We encode the finite graphs as graphemes, which can be represented as a triple consisting of a vertex set (or more generally, a topological space), an adjacency matrix, and a sampling (Borel) measure. We equip the space of graphons with convergence of sample subgraph densities and show that the grapheme-valued Markov chain converges to a grapheme-valued diffusion as the number of vertices goes to infinity. We show that the grapheme-valued diffusion has a stationary distribution that is linked to the Griffiths–Engen–McCloskey (GEM) distribution. In a companion paper (Greven et al. 2023), we build up a general theory for obtaining grapheme-valued diffusions via genealogies of models in population genetics.

Suggested Citation

  • Greven, Andreas & den Hollander, Frank & Klimovsky, Anton & Winter, Anita, 2024. "The grapheme-valued Wright–Fisher diffusion with mutation," Theoretical Population Biology, Elsevier, vol. 158(C), pages 76-88.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:76-88
    DOI: 10.1016/j.tpb.2024.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:76-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.