IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v154y2023icp1-26.html
   My bibliography  Save this article

Untangling the role of temporal and spatial variations in persistence of populations

Author

Listed:
  • Benaïm, Michel
  • Lobry, Claude
  • Sari, Tewfik
  • Strickler, Édouard

Abstract

We consider a population distributed between two habitats, in each of which it experiences a growth rate that switches periodically between two values, 1−ɛ>0 or −(1+ɛ)<0. We study the specific case where the growth rate is positive in one habitat and negative in the other one for the first half of the period, and conversely for the second half of the period, that we refer as the (±1) model. In the absence of migration, the population goes to 0 exponentially fast in each environment. In this paper, we show that, when the period is sufficiently large, a small dispersal between the two patches is able to produce a very high positive exponential growth rate for the whole population, a phenomena called inflation. We prove in particular that the threshold of the dispersal rate at which the inflation appears is exponentially small with the period. We show that inflation is robust to random perturbation, by considering a model where the values of the growth rate in each patch are switched at random times: we prove that inflation occurs for low switching rate and small dispersal. We also consider another stochastic model, where after each period of time T, the values of the growth rates in each patch is chosen randomly, independently from the other patch and from the past. Finally, we provide some extensions to more complicated models, especially epidemiological and density dependent models.

Suggested Citation

  • Benaïm, Michel & Lobry, Claude & Sari, Tewfik & Strickler, Édouard, 2023. "Untangling the role of temporal and spatial variations in persistence of populations," Theoretical Population Biology, Elsevier, vol. 154(C), pages 1-26.
  • Handle: RePEc:eee:thpobi:v:154:y:2023:i:c:p:1-26
    DOI: 10.1016/j.tpb.2023.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580923000485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2023.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2015. "Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 106(C), pages 45-59.
    2. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2018. "Asymmetric dispersal in the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 120(C), pages 11-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Daozhou & Lou, Yuan, 2022. "Total biomass of a single population in two-patch environments," Theoretical Population Biology, Elsevier, vol. 146(C), pages 1-14.
    2. Sadykov, Alexander & Farnsworth, Keith D., 2021. "Model of two competing populations in two habitats with migration: Application to optimal marine protected area size," Theoretical Population Biology, Elsevier, vol. 142(C), pages 114-122.
    3. Auger, Pierre & Kooi, Bob & Moussaoui, Ali, 2022. "Increase of maximum sustainable yield for fishery in two patches with fast migration," Ecological Modelling, Elsevier, vol. 467(C).
    4. Wu, Hong & Wang, Yuanshi & Li, Yufeng & DeAngelis, Donald L., 2020. "Dispersal asymmetry in a two-patch system with source–sink populations," Theoretical Population Biology, Elsevier, vol. 131(C), pages 54-65.
    5. Huang, Rong & Wang, Yuanshi & Wu, Hong, 2020. "Population abundance in predator–prey systems with predator’s dispersal between two patches," Theoretical Population Biology, Elsevier, vol. 135(C), pages 1-8.
    6. Jiale Ban & Yuanshi Wang & Hong Wu, 2022. "Dynamics of predator-prey systems with prey’s dispersal between patches," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 550-569, June.
    7. Wang, Yuanshi, 2019. "Asymmetric diffusion in a two-patch consumer-resource system," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 258-273.
    8. Tan, Chengguan & Wang, Yuanshi & Wu, Hong, 2020. "A consumer–resource system with source–sink populations and asymmetric dispersal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Jiapeng Qu & Zelin Liu & Zhenggang Guo & Yikang Li & Huakun Zhou, 2021. "A System Dynamics Model for Assessing the Efficacy of Lethal Control for Sustainable Management of Ochotona curzoniae on Tibetan Plateau," Sustainability, MDPI, vol. 13(2), pages 1-11, January.
    10. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2018. "Asymmetric dispersal in the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 120(C), pages 11-15.
    11. D.L. DeAngelis & Bo Zhang & Wei-Ming Ni & Yuanshi Wang, 2020. "Carrying Capacity of a Population Diffusing in a Heterogeneous Environment," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
    12. Wang, Yuanshi & DeAngelis, Donald L., 2019. "Energetic constraints and the paradox of a diffusing population in a heterogeneous environment," Theoretical Population Biology, Elsevier, vol. 125(C), pages 30-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:154:y:2023:i:c:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.