IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119317728.html
   My bibliography  Save this article

A consumer–resource system with source–sink populations and asymmetric dispersal

Author

Listed:
  • Tan, Chengguan
  • Wang, Yuanshi
  • Wu, Hong

Abstract

In this paper, we consider a two-patch system with source–sink populations and asymmetric dispersal, which includes exploitable resources and extends a recent model describing experiments. Applying dynamical systems theory, we reveal uniform persistence of the system and exhibit existence of stable positive equilibria. Based on rigorous analysis, we demonstrate that dispersal can lead to survival of species in both patches, and asymmetric dispersal can make the species reach higher density than that with symmetric dispersal or with no dispersal. A new prediction of this paper is that in source–sink populations, the species with asymmetric dispersal can approach a density higher than that in the corresponding homogeneous resource-distributions with or without dispersal, which extends previous theory. It is shown that small asymmetry to the sink patch can increase total population abundance, while extremely large asymmetry would result in extinction of species. Our findings are consistent with experimental results and provide new predictions. Numerical computations confirm and extend the findings.

Suggested Citation

  • Tan, Chengguan & Wang, Yuanshi & Wu, Hong, 2020. "A consumer–resource system with source–sink populations and asymmetric dispersal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317728
    DOI: 10.1016/j.physa.2019.123145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317728
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2018. "Asymmetric dispersal in the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 120(C), pages 11-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Daozhou & Lou, Yuan, 2022. "Total biomass of a single population in two-patch environments," Theoretical Population Biology, Elsevier, vol. 146(C), pages 1-14.
    2. Sadykov, Alexander & Farnsworth, Keith D., 2021. "Model of two competing populations in two habitats with migration: Application to optimal marine protected area size," Theoretical Population Biology, Elsevier, vol. 142(C), pages 114-122.
    3. Auger, Pierre & Kooi, Bob & Moussaoui, Ali, 2022. "Increase of maximum sustainable yield for fishery in two patches with fast migration," Ecological Modelling, Elsevier, vol. 467(C).
    4. Wu, Hong & Wang, Yuanshi & Li, Yufeng & DeAngelis, Donald L., 2020. "Dispersal asymmetry in a two-patch system with source–sink populations," Theoretical Population Biology, Elsevier, vol. 131(C), pages 54-65.
    5. Benaïm, Michel & Lobry, Claude & Sari, Tewfik & Strickler, Édouard, 2023. "Untangling the role of temporal and spatial variations in persistence of populations," Theoretical Population Biology, Elsevier, vol. 154(C), pages 1-26.
    6. Huang, Rong & Wang, Yuanshi & Wu, Hong, 2020. "Population abundance in predator–prey systems with predator’s dispersal between two patches," Theoretical Population Biology, Elsevier, vol. 135(C), pages 1-8.
    7. Jiale Ban & Yuanshi Wang & Hong Wu, 2022. "Dynamics of predator-prey systems with prey’s dispersal between patches," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 550-569, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.