IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v133y2020icp104-116.html
   My bibliography  Save this article

The popularity spectrum applied to a cross-cultural question

Author

Listed:
  • Nakamura, Mitsuhiro
  • Wakano, Joe Yuichiro
  • Aoki, Kenichi
  • Kobayashi, Yutaka

Abstract

We investigate a new approach for identifying the contribution of horizontal transmission between groups to cross-cultural similarity. This method can be applied to datasets that record the presence or absence of artefacts, or attributes thereof, in archaeological and ethnographic assemblages, from which popularity spectra can be constructed. Based on analytical and simulation models, we show that the form of such spectra is sensitive to horizontal transmission between groups. We then fit the analytical model to existing datasets by Bayesian MCMC and obtain evidence for strong horizontal transmission in oceanic as opposed to continental datasets. We check the validity of our statistical method by using individual-based models, and show that the vertical transmission rate tends to be underestimated if the datasets are obtained from lattice-structured rather than island-structured meta-populations. We also suggest that there may be more borrowing of functional than stylistic traits, although the evidence for this is currently ambiguous.

Suggested Citation

  • Nakamura, Mitsuhiro & Wakano, Joe Yuichiro & Aoki, Kenichi & Kobayashi, Yutaka, 2020. "The popularity spectrum applied to a cross-cultural question," Theoretical Population Biology, Elsevier, vol. 133(C), pages 104-116.
  • Handle: RePEc:eee:thpobi:v:133:y:2020:i:c:p:104-116
    DOI: 10.1016/j.tpb.2019.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580919301807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2019.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kobayashi, Yutaka & Wakano, Joe Yuichiro & Ohtsuki, Hisashi, 2018. "Genealogies and ages of cultural traits: An application of the theory of duality to the research on cultural evolution," Theoretical Population Biology, Elsevier, vol. 123(C), pages 18-27.
    2. Strimling, Pontus & Sjöstrand, Jonas & Enquist, Magnus & Eriksson, Kimmo, 2009. "Accumulation of independent cultural traits," Theoretical Population Biology, Elsevier, vol. 76(2), pages 77-83.
    3. Aoki, Kenichi & Lehmann, Laurent & Feldman, Marcus W., 2011. "Rates of cultural change and patterns of cultural accumulation in stochastic models of social transmission," Theoretical Population Biology, Elsevier, vol. 79(4), pages 192-202.
    4. Kobayashi, Yutaka & Aoki, Kenichi, 2012. "Innovativeness, population size and cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 82(1), pages 38-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahashi, Takuya & Ihara, Yasuo, 2022. "Application of a Markovian ancestral model to the temporal and spatial dynamics of cultural evolution on a population network," Theoretical Population Biology, Elsevier, vol. 143(C), pages 14-29.
    2. Kobayashi, Yutaka & Kurokawa, Shun & Ishii, Takuya & Wakano, Joe Yuichiro, 2021. "Time to extinction of a cultural trait in an overlapping generation model," Theoretical Population Biology, Elsevier, vol. 137(C), pages 32-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobayashi, Yutaka & Kurokawa, Shun & Ishii, Takuya & Wakano, Joe Yuichiro, 2021. "Time to extinction of a cultural trait in an overlapping generation model," Theoretical Population Biology, Elsevier, vol. 137(C), pages 32-45.
    2. Wakano, Joe Yuichiro & Gilpin, William & Kadowaki, Seiji & Feldman, Marcus W. & Aoki, Kenichi, 2018. "Ecocultural range-expansion scenarios for the replacement or assimilation of Neanderthals by modern humans," Theoretical Population Biology, Elsevier, vol. 119(C), pages 3-14.
    3. Takahashi, Takuya & Ihara, Yasuo, 2022. "Application of a Markovian ancestral model to the temporal and spatial dynamics of cultural evolution on a population network," Theoretical Population Biology, Elsevier, vol. 143(C), pages 14-29.
    4. Aoki, Kenichi, 2015. "Modeling abrupt cultural regime shifts during the Palaeolithic and Stone Age," Theoretical Population Biology, Elsevier, vol. 100(C), pages 6-12.
    5. Kobayashi, Yutaka & Wakano, Joe Yuichiro & Ohtsuki, Hisashi, 2018. "Genealogies and ages of cultural traits: An application of the theory of duality to the research on cultural evolution," Theoretical Population Biology, Elsevier, vol. 123(C), pages 18-27.
    6. Aoki, Kenichi & Feldman, Marcus W., 2014. "Evolution of learning strategies in temporally and spatially variable environments: A review of theory," Theoretical Population Biology, Elsevier, vol. 91(C), pages 3-19.
    7. Takahashi, Takuya & Ihara, Yasuo, 2019. "Cultural and evolutionary dynamics with best-of-k learning when payoffs are uncertain," Theoretical Population Biology, Elsevier, vol. 128(C), pages 27-38.
    8. Ohtsuki, Hisashi & Wakano, Joe Yuichiro & Kobayashi, Yutaka, 2017. "Inclusive fitness analysis of cumulative cultural evolution in an island-structured population," Theoretical Population Biology, Elsevier, vol. 115(C), pages 13-23.
    9. Baldini, Ryan, 2013. "Two success-biased social learning strategies," Theoretical Population Biology, Elsevier, vol. 86(C), pages 43-49.
    10. Andrew Buskell & Magnus Enquist & Fredrik Jansson, 2019. "A systems approach to cultural evolution," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    11. Damian Ruck & R. Alexander Bentley & Alberto Acerbi & Philip Garnett & Daniel J. Hruschka, 2017. "Role Of Neutral Evolution In Word Turnover During Centuries Of English Word Popularity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(06n07), pages 1-16, September.
    12. Mullon, Charles & Lehmann, Laurent, 2017. "Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission," Theoretical Population Biology, Elsevier, vol. 116(C), pages 33-46.
    13. Kobayashi, Yutaka & Ohtsuki, Hisashi & Wakano, Joe Y., 2016. "Population size vs. social connectedness — A gene-culture coevolutionary approach to cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 111(C), pages 87-95.
    14. Alexandre Bluet & François Osiurak & Emanuelle Reynaud, 2024. "Innovation rate and population structure moderate the effect of population size on cumulative technological culture," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    15. Kobayashi, Yutaka & Aoki, Kenichi, 2012. "Innovativeness, population size and cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 82(1), pages 38-47.
    16. Alexandre Bluet & François Osiurak & Nicolas Claidière & Emanuelle Reynaud, 2022. "Impact of technical reasoning and theory of mind on cumulative technological culture: insights from a model of micro-societies," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    17. Sally E. Street & Tuomas Eerola & Jeremy R. Kendal, 2022. "The role of population size in folk tune complexity," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    18. Ghirlanda, Stefano & Enquist, Magnus & Perc, Matjaž, 2010. "Sustainability of culture-driven population dynamics," Theoretical Population Biology, Elsevier, vol. 77(3), pages 181-188.
    19. David K. Levine & Salvatore Modica, 2012. "Conflict and the evolution of societies," Working Papers 2012-032, Federal Reserve Bank of St. Louis.
    20. David K Levine & Salvatore Modica, 2020. "State Power and Conflict Driven Evolution," Levine's Working Paper Archive 11694000000000014, David K. Levine.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:133:y:2020:i:c:p:104-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.