IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v132y2020icp82-91.html
   My bibliography  Save this article

Modeling and control of mosquito-borne diseases with Wolbachia and insecticides

Author

Listed:
  • Li, Yazhi
  • Liu, Xianning

Abstract

Mosquitoes cause more human suffering than any other organism. It is estimated that over one million people worldwide die from mosquito-borne diseases every year. With the continuous efforts of many researchers, Wolbachia gets more and more attention due to its characteristics of maternal transmission in mosquito population and it may cause cytoplasmic incompatibility (CI) which makes healthy females cannot fertilize normally after mating with infected males. In this paper, mathematical models are established to study Wolbachia transmission in mosquito population, and integrated mosquito control strategies are explored. Firstly, a classical ordinary differential system with general birth and death rate functions is established to describe the maternal transmission and CI effect. It is shown that the replacement strategy that the Wolbachia-uninfected mosquitoes are replaced by the infected ones is determined by the initial infection frequency. And Wolbachia spreads more easily for greater maternal transmission and CI rate. Moreover, all the wild mosquitoes will eventually be infected with Wolbachia if the maternal transmission is complete. Secondly, an impulsive state feedback control model is constructed to describe the integrated mosquito control. Besides Wolbachia, insecticides are sprayed when the quantity of mosquitoes reaches some Economic Threshold. The existence and stability of Wolbachia replacement periodic solution are discussed. Finally, some discussions are done and the future research directions are prospected.

Suggested Citation

  • Li, Yazhi & Liu, Xianning, 2020. "Modeling and control of mosquito-borne diseases with Wolbachia and insecticides," Theoretical Population Biology, Elsevier, vol. 132(C), pages 82-91.
  • Handle: RePEc:eee:thpobi:v:132:y:2020:i:c:p:82-91
    DOI: 10.1016/j.tpb.2019.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580919302060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2019.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suandi, Dani & Wijaya, Karunia Putra & Apri, Mochamad & Sidarto, Kuntjoro Adji & Syafruddin, Din & Götz, Thomas & Soewono, Edy, 2019. "A one-locus model describing the evolutionary dynamics of resistance against insecticide in Anopheles mosquitoes," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 90-106.
    2. Hu, Linchao & Huang, Mugen & Tang, Moxun & Yu, Jianshe & Zheng, Bo, 2015. "Wolbachia spread dynamics in stochastic environments," Theoretical Population Biology, Elsevier, vol. 106(C), pages 32-44.
    3. Ndii, Meksianis Z. & Allingham, David & Hickson, R.I. & Glass, Kathryn, 2016. "The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced," Theoretical Population Biology, Elsevier, vol. 111(C), pages 9-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Estigarribia, Pastor E. & Bliman, Pierre-Alexandre & Schaerer, Christian E., 2020. "A class of fast–slow models for adaptive resistance evolution," Theoretical Population Biology, Elsevier, vol. 135(C), pages 32-48.
    2. Li, Yazhi & Wang, Yan & Liu, Lili, 2023. "Optimal control of dengue vector based on a reaction–diffusion model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 250-270.
    3. Jabili Angina & Anish Bachhu & Eesha Talati & Rishi Talati & Jan Rychtář & Dewey Taylor, 2022. "Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever," Dynamic Games and Applications, Springer, vol. 12(1), pages 133-146, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    2. Qiming Huang & Lijie Chang & Zhaowang Zhang & Bo Zheng, 2023. "Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    3. Anggriani, N. & Tasman, H. & Ndii, M.Z. & Supriatna, A.K. & Soewono, E. & Siregar, E, 2019. "The effect of reinfection with the same serotype on dengue transmission dynamics," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 62-80.
    4. Lin Zhang & Wenjuan Guo, 2023. "Finite-Time Contraction Stability and Optimal Control for Mosquito Population Suppression Model," Mathematics, MDPI, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:132:y:2020:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.