IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v124y2018icp81-92.html
   My bibliography  Save this article

The Wright–Fisher site frequency spectrum as a perturbation of the coalescent’s

Author

Listed:
  • Melfi, Andrew
  • Viswanath, Divakar

Abstract

The first terms of the Wright–Fisher (WF) site frequency spectrum that follow the coalescent approximation are determined precisely, with a view to understanding the accuracy of the coalescent approximation for large samples. The perturbing terms show that the probability of a single mutant in the sample (singleton probability) is elevated in WF but the rest of the frequency spectrum is lowered. A part of the perturbation can be attributed to a mismatch in rates of merger between WF and the coalescent. The rest of it can be attributed to the difference in the way WF and the coalescent partition children between parents. In particular, the number of children of a parent is approximately Poisson under WF and approximately geometric under the coalescent. Whereas the mismatch in rates raises the probability of singletons under WF, its offspring distribution being approximately Poisson lowers it. The two effects are of opposite sense everywhere except at the tail of the frequency spectrum. The WF frequency spectrum begins to depart from that of the coalescent only for sample sizes that are comparable to the population size. These conclusions are confirmed by a separate analysis that assumes the sample size n to be equal to the population size N. Partly thanks to the canceling effects, the total variation distance of WF minus coalescent is 0.12∕logN for a population sized sample with n=N, which is only 1% for N=2×104. The coalescent remains a good approximation for the site frequency spectrum of-large samples.

Suggested Citation

  • Melfi, Andrew & Viswanath, Divakar, 2018. "The Wright–Fisher site frequency spectrum as a perturbation of the coalescent’s," Theoretical Population Biology, Elsevier, vol. 124(C), pages 81-92.
  • Handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:81-92
    DOI: 10.1016/j.tpb.2018.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918301084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melfi, Andrew & Viswanath, Divakar, 2018. "Single and simultaneous binary mergers in Wright-Fisher genealogies," Theoretical Population Biology, Elsevier, vol. 121(C), pages 60-71.
    2. Wenqing Fu & Timothy D. O’Connor & Goo Jun & Hyun Min Kang & Goncalo Abecasis & Suzanne M. Leal & Stacey Gabriel & Mark J. Rieder & David Altshuler & Jay Shendure & Deborah A. Nickerson & Michael J. B, 2013. "Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants," Nature, Nature, vol. 493(7431), pages 216-220, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathurin Dorel & Bertram Klinger & Tommaso Mari & Joern Toedling & Eric Blanc & Clemens Messerschmidt & Michal Nadler-Holly & Matthias Ziehm & Anja Sieber & Falk Hertwig & Dieter Beule & Angelika Egge, 2021. "Neuroblastoma signalling models unveil combination therapies targeting feedback-mediated resistance," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-26, November.
    2. Abhishek Niroula & Mauno Vihinen, 2019. "How good are pathogenicity predictors in detecting benign variants?," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    3. Thomas Beery & K. Ingemar Jönsson & Johan Elmberg, 2015. "From Environmental Connectedness to Sustainable Futures: Topophilia and Human Affiliation with Nature," Sustainability, MDPI, vol. 7(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:81-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.