IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v101y2015icp47-53.html
   My bibliography  Save this article

The existence and abundance of ghost ancestors in biparental populations

Author

Listed:
  • Gravel, Simon
  • Steel, Mike

Abstract

In a randomly-mating biparental population of size N there are, with high probability, individuals who are genealogical ancestors of every extant individual within approximately log2(N) generations into the past. We use this result of J. Chang to prove a curious corollary under standard models of recombination: there exist, with high probability, individuals within a constant multiple of log2(N) generations into the past who are simultaneously (i) genealogical ancestors of each of the individuals at the present, and (ii) genetic ancestors to none of the individuals at the present. Such ancestral individuals–ancestors of everyone today that left no genetic trace–represent ‘ghost’ ancestors in a strong sense. In this short note, we use simple analytical argument and simulations to estimate how many such individuals exist in finite Wright–Fisher populations.

Suggested Citation

  • Gravel, Simon & Steel, Mike, 2015. "The existence and abundance of ghost ancestors in biparental populations," Theoretical Population Biology, Elsevier, vol. 101(C), pages 47-53.
  • Handle: RePEc:eee:thpobi:v:101:y:2015:i:c:p:47-53
    DOI: 10.1016/j.tpb.2015.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrida, Bernard & Manrubia, Susanna C. & Zanette, Damián H., 2000. "Distribution of repetitions of ancestors in genealogical trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 1-16.
    2. Douglas L. T. Rohde & Steve Olson & Joseph T. Chang, 2004. "Modelling the recent common ancestry of all living humans," Nature, Nature, vol. 431(7008), pages 562-566, September.
    3. Matsen, Frederick A. & Evans, Steven N., 2008. "To what extent does genealogical ancestry imply genetic ancestry?," Theoretical Population Biology, Elsevier, vol. 74(2), pages 182-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelleher, J. & Etheridge, A.M. & Véber, A. & Barton, N.H., 2016. "Spread of pedigree versus genetic ancestry in spatially distributed populations," Theoretical Population Biology, Elsevier, vol. 108(C), pages 1-12.
    2. Severson, Alissa L. & Carmi, Shai & Rosenberg, Noah A., 2021. "Variance and limiting distribution of coalescence times in a diploid model of a consanguineous population," Theoretical Population Biology, Elsevier, vol. 139(C), pages 50-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsen, Frederick A. & Evans, Steven N., 2008. "To what extent does genealogical ancestry imply genetic ancestry?," Theoretical Population Biology, Elsevier, vol. 74(2), pages 182-190.
    2. Kelleher, J. & Etheridge, A.M. & Véber, A. & Barton, N.H., 2016. "Spread of pedigree versus genetic ancestry in spatially distributed populations," Theoretical Population Biology, Elsevier, vol. 108(C), pages 1-12.
    3. Severson, Alissa L. & Carmi, Shai & Rosenberg, Noah A., 2021. "Variance and limiting distribution of coalescence times in a diploid model of a consanguineous population," Theoretical Population Biology, Elsevier, vol. 139(C), pages 50-65.
    4. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    5. Neves, Armando G.M. & Moreira, Carlos H.C., 2006. "Applications of the Galton–Watson process to human DNA evolution and demography," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 132-146.
    6. R. B. Campbell, 2009. "Time Since Common Pedigree Ancestors with Two Progeny per Individual," Mathematical Population Studies, Taylor & Francis Journals, vol. 16(4), pages 248-265.
    7. Blath, Jochen & Kadow, Stephan & Ortgiese, Marcel, 2014. "The largest strongly connected component in the cyclical pedigree model of Wakeley et al," Theoretical Population Biology, Elsevier, vol. 98(C), pages 28-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:101:y:2015:i:c:p:47-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.