IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v71y2022ics0160791x22002299.html
   My bibliography  Save this article

Machine Capacity of Judgment: An interdisciplinary approach for making machine intelligence transparent to end-users

Author

Listed:
  • Tamò-Larrieux, Aurelia
  • Ciortea, Andrei
  • Mayer, Simon

Abstract

Intelligent machines surprise us with unexpected behaviors, giving rise to the question of whether such machines exhibit autonomous judgment. With judgment comes (the allocation of) responsibility. While it can be dangerous or misplaced to shift responsibility from humans to intelligent machines, current frameworks to think about responsible and transparent distribution of responsibility between all involved stakeholders are lacking. A more granular understanding of the autonomy exhibited by intelligent machines is needed to promote a more nuanced public discussion and allow laypersons as well as legal experts to think about, categorize, and differentiate among the capacities of artificial agents when distributing responsibility. To tackle this issue, we propose criteria that would support people in assessing the Machine Capacity of Judgment (MCOJ) of artificial agents. We conceive MCOJ drawing from the use of Human Capacity of Judgment (HCOJ) in the legal discourse, where HCOJ criteria are legal abstractions to assess when decision-making and judgment by humans must lead to legally binding actions or inactions under the law. In this article, we show in what way these criteria can be transferred to machines.

Suggested Citation

  • Tamò-Larrieux, Aurelia & Ciortea, Andrei & Mayer, Simon, 2022. "Machine Capacity of Judgment: An interdisciplinary approach for making machine intelligence transparent to end-users," Technology in Society, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002299
    DOI: 10.1016/j.techsoc.2022.102088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X22002299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2022.102088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoffmann, Christian Hugo, 2022. "Is AI intelligent? An assessment of artificial intelligence, 70 years after Turing," Technology in Society, Elsevier, vol. 68(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bratanova, Alexandra & Pham, Hien & Mason, Claire & Hajkowicz, Stefan & Naughtin, Claire & Schleiger, Emma & Sanderson, Conrad & Chen, Caron & Karimi, Sarvnaz, 2022. "Differentiating artificial intelligence activity clusters in Australia," Technology in Society, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.