IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v68y2022ics0160791x21003225.html
   My bibliography  Save this article

Supply chain resilience during the COVID-19 pandemic

Author

Listed:
  • Ozdemir, Dilek
  • Sharma, Mahak
  • Dhir, Amandeep
  • Daim, Tugrul

Abstract

The COVID-19 pandemic has challenged supply chains more seriously challenged than ever before. During this prolonged global health crisis, supply chain managers were forced to rely primarily on solutions developed for limited and foreseeable crises. This study aimed to understand how well existing solutions facilitated supply chain resilience in the UK perishable goods market. Consistent with this aim, we developed a research model based on the supply chain resilience literature and tested it with covariance-based structural equation modelling. Data were collected from 282 retail employees. Supply chain velocity was the preferred measure of resilience. The findings demonstrate that pandemic-related disruptions have affected resilience-building activities. While both proactive and reactive approaches have promoted resilience building during the pandemic, they have not been sufficient to ameliorate all the pandemic's negative effects. Innovation featured as the most effective factor, followed by robustness, empowerment, and risk management via reduced risk. The effect of firm size was significant only on supply chain risk management, with larger companies more efficiently applying risk management practices. The results emphasise the importance of innovation for supply chain resilience. Regardless of firm size, innovation works for every company. Empowerment is another costless and effective tool. Therefore, it is safe to conclude that innovation and empowerment can help organisations to manage their supply chains effectively during crises. Companies can strengthen their supply chain resilience by developing strong relationships with their supplier and employees.

Suggested Citation

  • Ozdemir, Dilek & Sharma, Mahak & Dhir, Amandeep & Daim, Tugrul, 2022. "Supply chain resilience during the COVID-19 pandemic," Technology in Society, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:teinso:v:68:y:2022:i:c:s0160791x21003225
    DOI: 10.1016/j.techsoc.2021.101847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X21003225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2021.101847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baghersad, Milad & Zobel, Christopher W., 2021. "Assessing the extended impacts of supply chain disruptions on firms: An empirical study," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "Ripple Effect in the Supply Chain: Definitions, Frameworks and Future Research Perspectives," International Series in Operations Research & Management Science, in: Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov (ed.), Handbook of Ripple Effects in the Supply Chain, pages 1-33, Springer.
    3. Kanika Mahajan & Shekhar Tomar, 2020. "Here Today, Gone Tomorrow: COVID-19 and Supply Chain Disruptions," Working Papers 28, Ashoka University, Department of Economics.
    4. Xun Li & Qun Wu & Clyde W. Holsapple & Thomas Goldsby, 2017. "An empirical examination of firm financial performance along dimensions of supply chain resilience," Management Research Review, Emerald Group Publishing Limited, vol. 40(3), pages 254-269, March.
    5. Dmitry Ivanov & Alexandre Dolgui, 2019. "Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5119-5136, August.
    6. Angappa Gunasekaran & Nachiappan Subramanian & Shams Rahman, 2015. "Supply chain resilience: role of complexities and strategies," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6809-6819, November.
    7. Liliana Mâță & Otilia Clipa & Katerina Tzafilkou, 2020. "The Development and Validation of a Scale to Measure University Teachers’ Attitude towards Ethical Use of Information Technology for a Sustainable Education," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    8. Alexandre Dolgui & Dmitry Ivanov & Maxim Rozhkov, 2020. "Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1285-1301, March.
    9. Cardoso, Sónia R. & Paula Barbosa-Póvoa, Ana & Relvas, Susana & Novais, Augusto Q., 2015. "Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty," Omega, Elsevier, vol. 56(C), pages 53-73.
    10. Fan, Huan & Li, Gang & Sun, Hongyi & Cheng, T.C.E., 2017. "An information processing perspective on supply chain risk management: Antecedents, mechanism, and consequences," International Journal of Production Economics, Elsevier, vol. 185(C), pages 63-75.
    11. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    12. Munir, Manal & Jajja, Muhammad Shakeel Sadiq & Chatha, Kamran Ali & Farooq, Sami, 2020. "Supply chain risk management and operational performance: The enabling role of supply chain integration," International Journal of Production Economics, Elsevier, vol. 227(C).
    13. Kevin B. Hendricks & Vinod R. Singhal, 2005. "Association Between Supply Chain Glitches and Operating Performance," Management Science, INFORMS, vol. 51(5), pages 695-711, May.
    14. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    15. B. James Deaton & Brady J. Deaton, 2020. "Food security and Canada's agricultural system challenged by COVID‐19," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 143-149, June.
    16. Rameshwar Dubey & Angappa Gunasekaran & Stephen J. Childe & Samuel Fosso Wamba & David Roubaud & Cyril Foropon, 2021. "Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 110-128, January.
    17. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    18. Kumar, Anish & Mangla, Sachin Kumar & Kumar, Pradeep & Song, Malin, 2021. "Mitigate risks in perishable food supply chains: Learning from COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Dmitry Ivanov & Ajay Das, 2020. "Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 13(1), pages 90-102.
    20. Belhadi, Amine & Kamble, Sachin & Jabbour, Charbel Jose Chiappetta & Gunasekaran, Angappa & Ndubisi, Nelson Oly & Venkatesh, Mani, 2021. "Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    21. Wong, Christina W.Y. & Lirn, Taih-Cherng & Yang, Ching-Chiao & Shang, Kuo-Chung, 2020. "Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization," International Journal of Production Economics, Elsevier, vol. 226(C).
    22. Tse, Ying Kei & Zhang, Minhao & Tan, Kim Hua & Pawar, Kulwant & Fernandes, Kiran, 2019. "Managing quality risk in supply chain to drive firm's performance: The roles of control mechanisms," Journal of Business Research, Elsevier, vol. 97(C), pages 291-303.
    23. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. M. Misbauddin & Mohammad Jahangir Alam & Chitra Lekha Karmaker & Md. Noor Un Nabi & Md. Mahedi Hasan, 2023. "Exploring the Antecedents of Supply Chain Viability in a Pandemic Context: An Empirical Study on the Commercial Flower Supply Chain of an Emerging Economy," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Xinqiu Zhu & Yenchun Jim Wu, 2022. "How Does Supply Chain Resilience Affect Supply Chain Performance? The Mediating Effect of Sustainability," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    3. Christopher M. Durugbo & Zainab Al-Balushi, 2023. "Supply chain management in times of crisis: a systematic review," Management Review Quarterly, Springer, vol. 73(3), pages 1179-1235, September.
    4. Kumar, Shashank & Raut, Rakesh D. & Agrawal, Nishant & Cheikhrouhou, Naoufel & Sharma, Mahak & Daim, Tugrul, 2022. "Integrated blockchain and internet of things in the food supply chain: Adoption barriers," Technovation, Elsevier, vol. 118(C).
    5. Kumar, Anil & Naz, Farheen & Luthra, Sunil & Vashistha, Rajat & Kumar, Vikas & Garza-Reyes, Jose Arturo & Chhabra, Deepak, 2023. "Digging DEEP: Futuristic building blocks of omni-channel healthcare supply chains resiliency using machine learning approach," Journal of Business Research, Elsevier, vol. 162(C).
    6. Ghazal Rezaei & Seyed Mohammad Hassan Hosseini & Shib Sankar Sana, 2022. "Exploring the Relationship between Data Analytics Capability and Competitive Advantage: The Mediating Roles of Supply Chain Resilience and Organization Flexibility," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    7. Mukesh Kumar & Rakesh D. Raut & Mahak Sharma & Vikas Kumar Choubey & Sanjoy Kumar Paul, 2022. "Enablers for resilience and pandemic preparedness in food supply chain," Operations Management Research, Springer, vol. 15(3), pages 1198-1223, December.
    8. Barbara Ocicka & Wioletta Mierzejewska & Jakub Brzeziński, 2022. "Creating supply chain resilience during and post-COVID-19 outbreak: the organizational ambidexterity perspective," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 49(1), pages 129-151, March.
    9. Abdul Basit & Laijun Wang & Samera Nazir & Saqib Mehmood & Iftikhar Hussain, 2023. "Managing the COVID-19 Pandemic: Enhancing Sustainable Supply Chain Performance through Management Innovation, Information Processing Capability, Business Model Innovation and Knowledge Management Capa," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    10. Durst, Susanne & Davila, Andrés & Foli, Samuel & Kraus, Sascha & Cheng, Cheng-Feng, 2023. "Antecedents of technological readiness in times of crises: A comparison between before and during COVID-19," Technology in Society, Elsevier, vol. 72(C).
    11. Na Wang & Jingze Chen & Hongfeng Wang, 2023. "Resilient Supply Chain Optimization Considering Alternative Supplier Selection and Temporary Distribution Center Location," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    12. Katarzyna Grzybowska & Agnieszka A. Tubis, 2022. "Supply Chain Resilience in Reality VUCA—An International Delphi Study," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    13. Abeer Aljohani, 2023. "Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    14. Ma. Janice J. Gumasing & Charles Kristian K. Ilo, 2023. "The Impact of Job Satisfaction on Creating a Sustainable Workplace: An Empirical Analysis of Organizational Commitment and Lifestyle Behavior," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    15. Riqing Liao & Wei Liu & Yuandao Yuan, 2023. "Resilience Improvement and Risk Management of Multimodal Transport Logistics in the Post–COVID-19 Era: The Case of TIR-Based Sea–Road Multimodal Transport Logistics," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    16. Mahmoud Z. Mistarihi & Ghazi M. Magableh, 2023. "Prioritization of Supply Chain Capabilities Using the FAHP Technique," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    17. Gupta, Himanshu & Yadav, Avinash Kumar & Kusi-Sarpong, Simonov & Khan, Sharfuddin Ahmed & Sharma, Shashi Chandra, 2022. "Strategies to overcome barriers to innovative digitalisation technologies for supply chain logistics resilience during pandemic," Technology in Society, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Cui & Hao Wu & Lin Wu & Ajay Kumar & Kim Hua Tan, 2023. "Investigating the relationship between digital technologies, supply chain integration and firm resilience in the context of COVID-19," Annals of Operations Research, Springer, vol. 327(2), pages 825-853, August.
    2. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    3. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    4. Iftikhar, Anas & Purvis, Laura & Giannoccaro, Ilaria, 2021. "A meta-analytical review of antecedents and outcomes of firm resilience," Journal of Business Research, Elsevier, vol. 135(C), pages 408-425.
    5. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    6. Tuhin Sengupta & Gopalakrishnan Narayanamurthy & Roger Moser & Vijay Pereira & Devleena Bhattacharjee, 2022. "Disruptive Technologies for Achieving Supply Chain Resilience in COVID-19 Era: An Implementation Case Study of Satellite Imagery and Blockchain Technologies in Fish Supply Chain," Information Systems Frontiers, Springer, vol. 24(4), pages 1107-1123, August.
    7. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    8. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    9. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Mohammad Nabipour & M. Ali Ülkü, 2021. "On Deploying Blockchain Technologies in Supply Chain Strategies and the COVID-19 Pandemic: A Systematic Literature Review and Research Outlook," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    11. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    12. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    13. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    14. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    15. Junaid, Muhammad & Zhang, Qingyu & Cao, Mei & Luqman, Adeel, 2023. "Nexus between technology enabled supply chain dynamic capabilities, integration, resilience, and sustainable performance: An empirical examination of healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    16. Ipek Kazancoglu & Melisa Ozbiltekin-Pala & Sachin Kumar Mangla & Ajay Kumar & Yigit Kazancoglu, 2023. "Using emerging technologies to improve the sustainability and resilience of supply chains in a fuzzy environment in the context of COVID-19," Annals of Operations Research, Springer, vol. 322(1), pages 217-240, March.
    17. Balezentis, Tomas & Zickiene, Agne & Volkov, Artiom & Streimikiene, Dalia & Morkunas, Mangirdas & Dabkiene, Vida & Ribasauskiene, Erika, 2023. "Measures for the viable agri-food supply chains: A multi-criteria approach," Journal of Business Research, Elsevier, vol. 155(PA).
    18. Gaurav Kumar Badhotiya & Gunjan Soni & Vipul Jain & Rohit Joshi & Sameer Mittal, 2022. "Assessing supply chain resilience to the outbreak of COVID-19 in Indian manufacturing firms," Operations Management Research, Springer, vol. 15(3), pages 1161-1180, December.
    19. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    20. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:68:y:2022:i:c:s0160791x21003225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.