IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v87y2014icp41-50.html
   My bibliography  Save this article

Analysis of European mobility surveys and their potential to support studies on the impact of electric vehicles on energy and infrastructure needs in Europe

Author

Listed:
  • Pasaoglu, Guzay
  • Zubaryeva, Alyona
  • Fiorello, Davide
  • Thiel, Christian

Abstract

Projections show that CO2 emissions from road transport will continue to rise in the future if adequate policy measures are not implemented. Electrically driven vehicle (EDV) deployment is one way to reduce the CO2 emissions. EDV drive and charge patterns determine the resulting electricity demand, emission reductions, future infrastructure requirements and the integration of non-dispatchable renewable electricity. In order to analyse the impact of EDVs on European energy and infrastructure needs, the driving patterns of potential EDV users should be analysed. Due to the lack of sufficient historical representative data on driving patterns with EDVs, this study analyses whether European national travel surveys (NTS) can be a potential data source to derive usage patterns for EDVs. We perform a meta-analysis of NTS from 9 European countries to assess their adequacy for analysing the impacts of EDVs on the European electricity system. Several gaps in data availability and comparability are identified. Except for the UK, European NTS are not detailed enough to assess EDV charging profiles, which is also due to the methodological differences used for NTS data collection in the various countries. We conclude that a dedicated survey needs to be developed to reliably estimate EDV charging profiles.

Suggested Citation

  • Pasaoglu, Guzay & Zubaryeva, Alyona & Fiorello, Davide & Thiel, Christian, 2014. "Analysis of European mobility surveys and their potential to support studies on the impact of electric vehicles on energy and infrastructure needs in Europe," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 41-50.
  • Handle: RePEc:eee:tefoso:v:87:y:2014:i:c:p:41-50
    DOI: 10.1016/j.techfore.2013.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016251300228X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2013.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sousa, Nuno & Almeida, Arminda & Coutinho-Rodrigues, João, 2020. "A multicriteria methodology for estimating consumer acceptance of alternative powertrain technologies," Transport Policy, Elsevier, vol. 85(C), pages 18-32.
    2. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    3. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    4. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    5. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    6. Tan, Ruipeng & Lin, Boqiang, 2019. "Public perception of new energy vehicles: Evidence from willingness to pay for new energy bus fares in China," Energy Policy, Elsevier, vol. 130(C), pages 347-354.
    7. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    8. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    9. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    11. Shengyuan Zhang & Jimin Zhao, 2016. "Assessing Urban Transport Systems through the Lens of Individual Behavior: Shenzhen and Hong Kong," HKUST IEMS Working Paper Series 2016-34, HKUST Institute for Emerging Market Studies, revised Jun 2016.
    12. Aurore Flipo & Madeleine Sallustio & Nathalie Ortar & Nicolas Senil, 2021. "Sustainable Mobility and the Institutional Lock-In: The Example of Rural France," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. Vytautas Palevičius & Askoldas Podviezko & Henrikas Sivilevičius & Olegas Prentkovskis, 2018. "Decision-Aiding Evaluation of Public Infrastructure for Electric Vehicles in Cities and Resorts of Lithuania," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    14. Borkowski, Przemysław & Jażdżewska-Gutta, Magdalena & Szmelter-Jarosz, Agnieszka, 2021. "Lockdowned: Everyday mobility changes in response to COVID-19," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    16. Heidrich, Oliver & Hill, Graeme A. & Neaimeh, Myriam & Huebner, Yvonne & Blythe, Philip T. & Dawson, Richard J., 2017. "How do cities support electric vehicles and what difference does it make?," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 17-23.
    17. Álvarez, Roberto & Zubelzu, Sergio & Díaz, Guzmán & López, Alberto, 2015. "Analysis of low carbon super credit policy efficiency in European Union greenhouse gas emissions," Energy, Elsevier, vol. 82(C), pages 996-1010.
    18. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:87:y:2014:i:c:p:41-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.