IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v199y2024ics0040162523006911.html
   My bibliography  Save this article

The artificial intelligence shock and socio-political polarization

Author

Listed:
  • Jacobs, Julian

Abstract

Are artificial intelligence's complimenting and displacing labor market effects corresponding with similar polarization in socio-political beliefs? This study answers this question by analyzing survey data of 26,311 Americans, collected from the American National Election Survey. Data is deployed alongside 22-category Manyika et al. (2017) ‘automation potential’ estimates (proxying for ‘displacement due to AI’) and Michael Webb (2019) ‘AI-exposure’ estimates (proxying for labor complimented by AI). The study summarizes the demographic characteristics and socio-political views of the highly AI-exposed and automation-susceptible groups. It deploys a year and region fixed effects OLS model, with standard error clustered at the occupation level. This study then finds that automation-susceptible ‘losers’ of AI are more likely to be culturally conservative and economically left-leaning. Those complimented by AI are more likely to hold socially liberal and fiscally conservative views. The results suggest AI's labor market polarization may accompany radicalization and socio-political divergence, with implications for vote capture and representation of working-class interests in government.

Suggested Citation

  • Jacobs, Julian, 2024. "The artificial intelligence shock and socio-political polarization," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:tefoso:v:199:y:2024:i:c:s0040162523006911
    DOI: 10.1016/j.techfore.2023.123006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523006911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.123006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    2. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    3. Alex Chernoff & Casey Warman, 2023. "COVID-19 and implications for automation," Applied Economics, Taylor & Francis Journals, vol. 55(17), pages 1939-1957, April.
    4. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    5. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    6. Magnus Carlsson & Gordon B. Dahl & Dan-Olof Rooth, 2015. "Backlash in Policy Attitudes After the Election of Extreme Political Parties," NBER Working Papers 21062, National Bureau of Economic Research, Inc.
    7. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    8. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    9. Allen, Robert C., 2009. "Engels' pause: Technical change, capital accumulation, and inequality in the british industrial revolution," Explorations in Economic History, Elsevier, vol. 46(4), pages 418-435, October.
    10. Claudia Goldin & Lawrence F. Katz, 2007. "The Race between Education and Technology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005," NBER Working Papers 12984, National Bureau of Economic Research, Inc.
    11. Joel Mokyr & Chris Vickers & Nicolas L. Ziebarth, 2015. "The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different?," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 31-50, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Vermeulen & Jan Kesselhut & Andreas Pyka & Pier Paolo Saviotti, 2018. "The Impact of Automation on Employment: Just the Usual Structural Change?," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    2. HAMAGUCHI Nobuaki & KONDO Keisuke, 2018. "Regional Employment and Artificial Intelligence in Japan," Discussion papers 18032, Research Institute of Economy, Trade and Industry (RIETI).
    3. Lu, Jing & Xiao, Qinglan & Wang, Taoxuan, 2023. "Does the digital economy generate a gender dividend for female employment? Evidence from China," Telecommunications Policy, Elsevier, vol. 47(6).
    4. Matthias Firgo & Peter Mayerhofer & Michael Peneder & Philipp Piribauer & Peter Reschenhofer, 2018. "Beschäftigungseffekte der Digitalisierung in den Bundesländern sowie in Stadt und Land," WIFO Studies, WIFO, number 61633, January.
    5. Huajie Jiang & Qiguo Gong, 2022. "Does Skill Polarization Affect Wage Polarization? U.S. Evidence 2009–2021," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    6. Zilian, Laura S. & Zilian, Stella S. & Jäger, Georg, 2021. "Labour market polarisation revisited: evidence from Austrian vacancy data," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-7.
    7. Henrik Schwabe & Fulvio Castellacci, 2020. "Automation, workers’ skills and job satisfaction," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    8. Hidalgo, Camila & Micco, Alejandro, 2024. "Computerization, offshoring and trade: The effect on developing countries," World Development, Elsevier, vol. 180(C).
    9. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    10. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Egana del Sol, Pablo, 2020. "The Future of Work in Developing Economies: What can we learn from the South?," GLO Discussion Paper Series 483, Global Labor Organization (GLO).
    12. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    13. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    14. Eckhardt Bode & Stephan Brunow & Ingrid Ott & Alina Sorgner, 2019. "Worker Personality: Another Skill Bias beyond Education in the Digital Age," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 254-294, November.
    15. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Maria-Chiara Morandini & Anna Thum-Thysen & Anneleen Vandeplas, 2020. "Facing the Digital Transformation: Are Digital Skills Enough?," European Economy - Economic Briefs 054, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    17. Crowley, Frank & Doran, Justin, 2019. "Automation and Irish Towns: Who's Most at Risk?," SRERC Working Paper Series SRERCWP2019-1, University College Cork (UCC), Spatial and Regional Economic Research Centre (SRERC).
    18. Alonso, Cristian & Berg, Andrew & Kothari, Siddharth & Papageorgiou, Chris & Rehman, Sidra, 2022. "Will the AI revolution cause a great divergence?," Journal of Monetary Economics, Elsevier, vol. 127(C), pages 18-37.
    19. van Hoorn, Andre, 2018. "The Political Economy of Automation: Occupational Automatability and Preferences for Redistribution," MPRA Paper 86460, University Library of Munich, Germany.
    20. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).

    More about this item

    Keywords

    Artificial intelligence; Digitalization; Economic shocks; Inequality; Polarization; Political psychology;
    All these keywords.

    JEL classification:

    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:199:y:2024:i:c:s0040162523006911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.