IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v177y2022ics0040162522000774.html
   My bibliography  Save this article

Deep learning based dual encoder retrieval model for citation recommendation

Author

Listed:
  • Da, Fang
  • Kou, Gang
  • Peng, Yi

Abstract

Citation recommendation recommends relevant documents to users based on their inputs and other information. Many traditional citation recommendation models use keywords to describe item attributes and ignore the semantics of sequences, which cause the relevance of the search results unsatisfactory. This paper proposes a deep-learning-based dual encoder retrieval (DER) model, which combines a text representation technique and a sentence pair matching approach, to improve the performance of citation recommendation. First, an input query and paper titles from publication databases are encoded to semantic vectors separately by two deep-learning-based encoders. Second, the semantic vector of the input query is matched with vectors that representing papers in the published databases by the multilayer perceptron approach to compute similarity scores. Finally, a list of documents, which are sorted in descending order of similarity scores, is generated. To validate the effectiveness of the proposed approach, it is compared with five baselines using a citation dataset. The results show that the proposed model achieves the best performance in terms of accuracy, recall, F1-measure, and AUC. In addition, we compare the DER (Glove) model with Google Scholar using a small example of twenty articles. The DER (Glove) model outperformed Google Scholar in seven recommendations, and tied in ten recommendations.

Suggested Citation

  • Da, Fang & Kou, Gang & Peng, Yi, 2022. "Deep learning based dual encoder retrieval model for citation recommendation," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000774
    DOI: 10.1016/j.techfore.2022.121545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522000774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    2. Dragomir R. Radev & Mark Thomas Joseph & Bryan Gibson & Pradeep Muthukrishnan, 2016. "A bibliometric and network analysis of the field of computational linguistics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 683-706, March.
    3. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.
    2. Norma Salgado-Orellana & Emilio Berrocal de-Luna & Calixto Gutiérrez-Braojos, 2021. "A scientometric study of doctoral theses on the Roma in the Iberian Peninsula during the 1977–2018 period," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 437-458, January.
    3. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    4. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    5. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    6. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    7. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    8. Simone Belli & Carlos Gonzalo-Penela, 2020. "Science, research, and innovation infospheres in Google results of the Ibero-American countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 635-653, May.
    9. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    11. Ibrahim Ahmed Ghashim & Muhammad Arshad, 2023. "Internet of Things (IoT)-Based Teaching and Learning: Modern Trends and Open Challenges," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
    12. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    13. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    14. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    15. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
    16. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    17. Enrique Orduña-Malea & Rodrigo Costas, 2021. "Link-based approach to study scientific software usage: the case of VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8153-8186, September.
    18. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    19. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    20. Nur Syamsiyah & Lies Sulistyowati & Trisna Insan Noor & Iwan Setiawan, 2023. "The Sustainability Level of an EcoVillage in the Upper Citarum Watershed of West Java Province, Indonesia," Sustainability, MDPI, vol. 15(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.