IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v170y2021ics0040162521003413.html
   My bibliography  Save this article

Forecasting AI progress: A research agenda

Author

Listed:
  • Gruetzemacher, Ross
  • Dorner, Florian E.
  • Bernaola-Alvarez, Niko
  • Giattino, Charlie
  • Manheim, David

Abstract

Forecasting AI progress is essential to reducing uncertainty in order to appropriately plan for research efforts on AI safety and AI governance. While this is generally considered to be an important topic, little work has been conducted on it and there is no published document that gives a balanced overview of the field. Moreover, the field is very diverse and there is no published consensus regarding its direction. This paper describes the development of a research agenda for forecasting AI progress which utilized the Delphi technique to elicit and aggregate experts’ opinions on what questions and methods to prioritize. Experts indicated that a wide variety of methods should be considered for forecasting AI progress. Moreover, experts identified salient questions that were both general and completely unique to the problem of forecasting AI progress. Some of the highest priority topics include the validation of (partially unresolved) forecasts, how to make forecasts action-guiding, and the quality of different performance metrics. While statistical methods seem more promising, there is also recognition that supplementing judgmental techniques can be quite beneficial.

Suggested Citation

  • Gruetzemacher, Ross & Dorner, Florian E. & Bernaola-Alvarez, Niko & Giattino, Charlie & Manheim, David, 2021. "Forecasting AI progress: A research agenda," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:tefoso:v:170:y:2021:i:c:s0040162521003413
    DOI: 10.1016/j.techfore.2021.120909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521003413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895.
    3. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    4. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    5. Kott, Alexander & Perconti, Philip, 2018. "Long-term forecasts of military technologies for a 20–30 year horizon: An empirical assessment of accuracy," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 272-279.
    6. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    7. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    8. Ville A. Satopää & Robin Pemantle & Lyle H. Ungar, 2016. "Modeling Probability Forecasts via Information Diversity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1623-1633, October.
    9. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    10. Pavel Atanasov & Phillip Rescober & Eric Stone & Samuel A. Swift & Emile Servan-Schreiber & Philip Tetlock & Lyle Ungar & Barbara Mellers, 2017. "Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls," Management Science, INFORMS, vol. 63(3), pages 691-706, March.
    11. Fischhoff, Baruch, 1994. "What forecasts (seem to) mean," International Journal of Forecasting, Elsevier, vol. 10(3), pages 387-403, November.
    12. Elisabeth M. Stephens & Tamsin L. Edwards & David Demeritt, 2012. "Communicating probabilistic information from climate model ensembles—lessons from numerical weather prediction," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 3(5), pages 409-426, September.
    13. Gruetzemacher, Ross & Paradice, David & Lee, Kang Bok, 2020. "Forecasting extreme labor displacement: A survey of AI practitioners," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederiksen, Marianne Harbo & Wolf, Patricia & Klotz, Ute, 2024. "Citizen visions of drone uses and impacts in 2057: Far-future insights for policy decision-makers," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    2. Parteka, Aleksandra & Wolszczak-Derlacz, Joanna & Nikulin, Dagmara, 2024. "How digital technology affects working conditions in globally fragmented production chains: Evidence from Europe," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Haque, AKM Bahalul & Islam, A.K.M. Najmul & Mikalef, Patrick, 2023. "Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    4. Armenia, Stefano & Franco, Eduardo & Iandolo, Francesca & Maielli, Giuliano & Vito, Pietro, 2024. "Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    5. Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2021. "Forecasting the Artificial Intelligence Index Returns: A Hybrid Approach," Working Papers 202182, University of Pretoria, Department of Economics.
    6. Jean-Philippe Deranty & Thomas Corbin, 2022. "Artificial Intelligence and work: a critical review of recent research from the social sciences," Papers 2204.00419, arXiv.org.
    7. Singh, Nidhi & Jain, Monika & Kamal, Muhammad Mustafa & Bodhi, Rahul & Gupta, Bhumika, 2024. "Technological paradoxes and artificial intelligence implementation in healthcare. An application of paradox theory," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    2. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    3. Bernardo S Buarque & Ronald B Davies & Ryan M Hynes & Dieter F Kogler, 2020. "OK Computer: the creation and integration of AI in Europe," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 175-192.
    4. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    5. Martin Obschonka & David B. Audretsch, 2020. "Artificial intelligence and big data in entrepreneurship: a new era has begun," Small Business Economics, Springer, vol. 55(3), pages 529-539, October.
    6. Nazareno, Luísa & Schiff, Daniel S., 2021. "The impact of automation and artificial intelligence on worker well-being," Technology in Society, Elsevier, vol. 67(C).
    7. Jakub Growiec, 2019. "The Hardware–Software Model: A New Conceptual Framework of Production, R&D, and Growth with AI," Working Paper series 19-18, Rimini Centre for Economic Analysis.
    8. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi & Liao, Chih-Hsing, 2023. "Should the government subsidize innovation or automation?," Macroeconomic Dynamics, Cambridge University Press, vol. 27(4), pages 1059-1088, June.
    9. Gries, Thomas & Naude, Wim, 2018. "Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter?," MERIT Working Papers 2018-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Anuraag Singh & Giorgio Triulzi & Christopher L. Magee, 2020. "Technological improvement rate estimates for all technologies: Use of patent data and an extended domain description," Papers 2004.13919, arXiv.org.
    11. Loebbing, Jonas, 2018. "An Elementary Theory of Endogenous Technical Change and Wage Inequality," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181603, Verein für Socialpolitik / German Economic Association.
    12. Kariem Soliman, 2021. "Are Industrial Robots a new GPT? A Panel Study of Nine European Countries with Capital and Quality-adjusted Industrial Robots as Drivers of Labour Productivity Growth," EIIW Discussion paper disbei307, Universitätsbibliothek Wuppertal, University Library.
    13. Mark Knell & Simone Vannuccini, 2022. "Tools and concepts for understanding disruptive technological change after Schumpeter," Jena Economics Research Papers 2022-005, Friedrich-Schiller-University Jena.
    14. Jeffrey Ding & Allan Dafoe, 2021. "Engines of Power: Electricity, AI, and General-Purpose Military Transformations," Papers 2106.04338, arXiv.org.
    15. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    16. Juan F. Jimeno, 2019. "Fewer babies and more robots: economic growth in a new era of demographic and technological changes," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(2), pages 93-114, June.
    17. Anton Korinek & Joseph E. Stiglitz, 2018. "Artificial Intelligence and Its Implications for Income Distribution and Unemployment," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 349-390, National Bureau of Economic Research, Inc.
    18. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    19. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    20. Atanasov, Pavel & Witkowski, Jens & Ungar, Lyle & Mellers, Barbara & Tetlock, Philip, 2020. "Small steps to accuracy: Incremental belief updaters are better forecasters," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 19-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:170:y:2021:i:c:s0040162521003413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.