Political activity in social media induces forest fires in the Brazilian Amazon
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2021.120676
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Jun, Seung-Pyo & Yoo, Hyoung Sun & Lee, Jae-Seong, 2021. "The impact of the pandemic declaration on public awareness and behavior: Focusing on COVID-19 google searches," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
- Wolfram Höpken & Tobias Eberle & Matthias Fuchs & Maria Lexhagen, 2019. "Google Trends data for analysing tourists’ online search behaviour and improving demand forecasting: the case of Åre, Sweden," Information Technology & Tourism, Springer, vol. 21(1), pages 45-62, March.
- Helen Margetts, 2017. "Political behaviour and the acoustics of social media," Nature Human Behaviour, Nature, vol. 1(4), pages 1-3, April.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
- Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
- Mavragani, Amaryllis & Tsagarakis, Konstantinos P., 2016. "YES or NO: Predicting the 2015 GReferendum results using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 1-5.
- Palma Lampreia Dos Santos, Maria José, 2018. "Nowcasting and forecasting aquaponics by Google Trends in European countries," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 178-185.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
- Zhongchen Song & Tom Coupé, 2023.
"Predicting Chinese consumption series with Baidu,"
Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
- Zhongchen Song & Tom Coupé, 2022. "Predicting Chinese consumption series with Baidu," Working Papers in Economics 22/19, University of Canterbury, Department of Economics and Finance.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
- Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
- Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Andrea Fasulo & Alessia Naccarato & Alessio Pizzichini, 2019. "Nowcasting the Italian unemployment rate with Google Trends," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(4), pages 29-40, October-D.
- Bentzen, Jeanet Sinding, 2021.
"In crisis, we pray: Religiosity and the COVID-19 pandemic,"
Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
- Bentzen, Jeanet, 2020. "In Crisis, We Pray: Religiosity and the COVID-19 Pandemic," CEPR Discussion Papers 14824, C.E.P.R. Discussion Papers.
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," MPRA Paper 102315, University Library of Munich, Germany.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Bodo Herzog & Lana dos Santos, 2021. "Google Search in Exchange Rate Models: Hype or Hope?," JRFM, MDPI, vol. 14(11), pages 1-40, October.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021.
"Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg,"
Forecasting, MDPI, vol. 3(4), pages 1-30, October.
- Fantazzini, Dean & Pushchelenko, Julia & Mironenkov, Alexey & Kurbatskii, Alexey, 2021. "Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg," MPRA Paper 110452, University Library of Munich, Germany.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Niesert, Robin F. & Oorschot, Jochem A. & Veldhuisen, Christian P. & Brons, Kester & Lange, Rutger-Jan, 2020.
"Can Google search data help predict macroeconomic series?,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 1163-1172.
- Robin Niesert & Jochem Oorschot & Chris Veldhuisen & Kester Brons & Rutger-Jan Lange, "undated". "Can Google Search Data Help Predict Macroeconomic Series?," Tinbergen Institute Discussion Papers 19-021/III, Tinbergen Institute.
- Gutiérrez, Antonio, 2023. "La brecha de género en el emprendimiento y la cultura emprendedora: Evidencia con Google Trends [Entrepreneurship gender gap and entrepreneurial culture: Evidence from Google Trends]," MPRA Paper 115876, University Library of Munich, Germany.
- Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
- Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
- Gutiérrez, Antonio, 2022. "Movilidad urbana y datos de alta frecuencia [Urban mobility and high frequency data]," MPRA Paper 114854, University Library of Munich, Germany.
More about this item
Keywords
Amazon forest; Google Trends; Fires; Social media;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521001086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.