IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v160y2020ics0040162520310660.html
   My bibliography  Save this article

What do adoption patterns of solar panels observed so far tell about governments’ incentive? Insights from diffusion models

Author

Listed:
  • Bunea, Anita M.
  • Della Posta, Pompeo
  • Guidolin, Mariangela
  • Manfredi, Piero

Abstract

The fast worldwide spread of renewable energies is one of the key aspects of the international response to the threats of global warming. However, the diffusion of solar photovoltaic panels (SPPs) shows strict dependence on public incentive support. We apply diffusion models to SPP adoptions (26 countries between 1992 and 2016) to identify the temporal profile of the major domestic shocks in SPP markets whilst focusing on the role of public interventions in influencing the scale and shape of SPP adoption curves. The results show that the SPP market started in all countries considered without the assistance of a strong innovation component so that its initial lifecycle was essentially sustained by imitation. The largest part of its market growth, however, resulted from massive positive shocks that occurred between 2007 and 2016, possibly attributed to incentive measures. These public incentives were often poorly designed, resulting in late, short-term responses to external stimuli, such as the cogent pressure of international deadlines, in the absence of a well-established long-term plan. The limited temporal persistency of public actions, causing the market to be dominated by incentive-forced waves followed by negligible post-incentive adoptions, indicate the emergence of an addiction to incentive phenomenon and, therefore, a deleterious role of expectations.

Suggested Citation

  • Bunea, Anita M. & Della Posta, Pompeo & Guidolin, Mariangela & Manfredi, Piero, 2020. "What do adoption patterns of solar panels observed so far tell about governments’ incentive? Insights from diffusion models," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:tefoso:v:160:y:2020:i:c:s0040162520310660
    DOI: 10.1016/j.techfore.2020.120240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520310660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries," Energy Policy, Elsevier, vol. 38(8), pages 4011-4020, August.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    4. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    5. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    6. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    7. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    8. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    9. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    10. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    11. Avril, S. & Mansilla, C. & Busson, M. & Lemaire, T., 2012. "Photovoltaic energy policy: Financial estimation and performance comparison of the public support in five representative countries," Energy Policy, Elsevier, vol. 51(C), pages 244-258.
    12. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries," Energy Policy, Elsevier, vol. 38(7), pages 3297-3308, July.
    13. Karneyeva, Yuliya & Wüstenhagen, Rolf, 2017. "Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models," Energy Policy, Elsevier, vol. 106(C), pages 445-456.
    14. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    15. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    16. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    17. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    18. Yamaguchi, Yohei & Akai, Kenju & Shen, Junyi & Fujimura, Naoki & Shimoda, Yoshiyuki & Saijo, Tatsuyoshi, 2013. "Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices," Applied Energy, Elsevier, vol. 102(C), pages 1148-1159.
    19. Meade, Nigel & Islam, Towhidul, 2015. "Modelling European usage of renewable energy technologies for electricity generation," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 497-509.
    20. Vasseur, Véronique & Kemp, René, 2015. "The adoption of PV in the Netherlands: A statistical analysis of adoption factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 483-494.
    21. Huijben, J.C.C.M. & Podoynitsyna, K.S. & van Rijn, M.L.B. & Verbong, G.P.J., 2016. "A review of governmental support instruments channeling PV market growth in the Flanders region of Belgium (2006–2013)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1282-1290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irfan, Mohd & Yadav, Sarvendra & Shaw, Krishnendu, 2021. "The adoption of solar photovoltaic technology among Indian households: Examining the influence of entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Francesca Bitonti, 2022. "Bass model-based approach to migration," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(2), pages 4-12, April-Jun.
    4. Eslami, Hossein & Krishnan, Trichy, 2023. "New sustainable product adoption: The role of economic and social factors," Energy Policy, Elsevier, vol. 183(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Francesca Bitonti & Angelo Mazza & Salvatore Strozza, 2021. "Could the bass model be applied to Italian emigration?," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(3), pages 5-16, July-Sept.
    7. Tinta, Abdoulganiour Almame & Sylla, Ahmed Yves & Lankouande, Edmond, 2023. "Solar PV adoption in rural Burkina Faso," Energy, Elsevier, vol. 278(PB).
    8. Trieste, Leopoldo & Geisler, Elie & Turchetti, Giuseppe, 2022. "Columbus' egg and the engineer's effect in forecasting solutions adoption," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Anita M. Bunea & Mariangela Guidolin & Piero Manfredi & Pompeo Della Posta, 2022. "Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns," Forecasting, MDPI, vol. 4(2), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anita M. Bunea & Pietro Manfredi & Pompeo Della Posta & Mariangela Guidolin, 2019. "What do adoption patterns of solar panels observed so far tell about governments' incentive? insight from diffusion models," Papers 1909.10017, arXiv.org.
    2. Anita M. Bunea & Mariangela Guidolin & Piero Manfredi & Pompeo Della Posta, 2022. "Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns," Forecasting, MDPI, vol. 4(2), pages 1-21, April.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    5. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    6. Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
    7. Eslami, Hossein & Krishnan, Trichy, 2023. "New sustainable product adoption: The role of economic and social factors," Energy Policy, Elsevier, vol. 183(C).
    8. Anna Créti & Jérôme Joaug, 2012. "Let the sun shine: Optimal deployment of photovoltaics in Germany," Working Papers hal-00751743, HAL.
    9. Ramírez, F. Javier & Honrubia-Escribano, A. & Gómez-Lázaro, E. & Pham, Duc T., 2017. "Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries," Energy Policy, Elsevier, vol. 102(C), pages 440-452.
    10. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment," Renewable Energy, Elsevier, vol. 180(C), pages 516-535.
    11. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    12. Baur, Lucia & Uriona M., Mauricio, 2018. "Diffusion of photovoltaic technology in Germany: A sustainable success or an illusion driven by guaranteed feed-in tariffs?," Energy, Elsevier, vol. 150(C), pages 289-298.
    13. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    14. Lei Li & Ting Chi & Meng Zhang & Shi Wang, 2016. "Multi-Layered Capital Subsidy Policy for the PV Industry in China Considering Regional Differences," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    15. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    16. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    17. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    18. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    20. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    More about this item

    Keywords

    Global diffusion of solar photovoltaic panels; State incentive; Generalised Bass model; Generalised internal model; Perspectives on adoptions of renewable energies;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:160:y:2020:i:c:s0040162520310660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.