IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v153y2020ics0040162519316075.html
   My bibliography  Save this article

Effective bioeconomy? a MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations

Author

Listed:
  • Asada, Raphael
  • Cardellini, Giuseppe
  • Mair-Bauernfeind, Claudia
  • Wenger, Julia
  • Haas, Verena
  • Holzer, Daniel
  • Stern, Tobias

Abstract

The European Commission (EC) expects a bioeconomic transition to have both environmental and socioeconomic benefits. While bioeconomic impact assessments exist, they usually focus on a particular sustainability dimension and on specific products or technologies. To draw a more holistic picture, this paper aims to analyze the substitution impacts of four bioeconomic innovations in terms of policy objectives as formulated by the EC. We estimated the indirect impacts resulting from a partial replacement of non-bio-based inputs with bio-based substitutes in the transport equipment, construction, textile, and chemical sectors. A multi-regional input-output (MRIO)-based approach was used to yield point estimates and uncertainty intervals. While our results point to a number of possible socioeconomic and environmental benefits, there is an astonishing diversity of outcomes across the scenarios with regard to their potentials and limitations to contribute to policy objectives. Decisions on future utilization paths of biomass will strongly influence the characteristics of an upcoming bioeconomy in terms of sustainability. Mere promotion of additional biomass use as a policy strategy is not sufficient to pursue the development of an effective bioeconomy capable to deliver “sustainable growth.”

Suggested Citation

  • Asada, Raphael & Cardellini, Giuseppe & Mair-Bauernfeind, Claudia & Wenger, Julia & Haas, Verena & Holzer, Daniel & Stern, Tobias, 2020. "Effective bioeconomy? a MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:tefoso:v:153:y:2020:i:c:s0040162519316075
    DOI: 10.1016/j.techfore.2020.119946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162519316075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.119946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greene, David L. & Hopson, Janet L. & Li, Jia, 2006. "Have we run out of oil yet? Oil peaking analysis from an optimist's perspective," Energy Policy, Elsevier, vol. 34(5), pages 515-531, March.
    2. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    3. Kirkels, Arjan, 2016. "Biomass boom or bubble? A longitudinal study on expectation dynamics," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 83-96.
    4. Beate El-Chichakli & Joachim von Braun & Christine Lang & Daniel Barben & Jim Philp, 2016. "Policy: Five cornerstones of a global bioeconomy," Nature, Nature, vol. 535(7611), pages 221-223, July.
    5. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    6. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    7. Vincent Egenolf & Stefan Bringezu, 2019. "Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    8. Boehlje, Michael & Broring, Stefanie, 2011. "The Increasing Multifunctionality of Agricultural Raw Materials: Three Dilemmas for Innovation and Adoption," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 14(2), pages 1-16, May.
    9. Imbert, Enrica & Ladu, Luana & Morone, Piergiuseppe & Quitzow, Rainer, 2017. "Policy strategies for a transition to a bioeconomy in Europe: the case of Italy and Germany," MPRA Paper 78143, University Library of Munich, Germany.
    10. Mohammad Omar & Ahmad Mayyas, 2020. "Eco-Material Selection for Lightweight Vehicle Design," Chapters, in: Manuel J. Hermoso-Orzaez & Alfonso Gago-Calderon (ed.), Energy Efficiency and Sustainable Lighting - a Bet for the Future, IntechOpen.
    11. Steinberger, Julia K. & Krausmann, Fridolin & Eisenmenger, Nina, 2010. "Global patterns of materials use: A socioeconomic and geophysical analysis," Ecological Economics, Elsevier, vol. 69(5), pages 1148-1158, March.
    12. Raphael Asada & Tamás Krisztin & Fulvio di Fulvio & Florian Kraxner & Tobias Stern, 2020. "Bioeconomic transition?: Projecting consumption‐based biomass and fossil material flows to 2050," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1059-1073, October.
    13. Stern, Tobias & Ledl, Caroline & Braun, Martin & Hesser, Franziska & Schwarzbauer, Peter, 2015. "Biorefineries' impacts on the Austrian forest sector: A system dynamics approach," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 311-326.
    14. Kjartan Steen-Olsen & Anne Owen & Edgar G. Hertwich & Manfred Lenzen, 2014. "Effects Of Sector Aggregation On Co 2 Multipliers In Multiregional Input-Output Analyses," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 284-302, September.
    15. Louise Staffas & Mathias Gustavsson & Kes McCormick, 2013. "Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches," Sustainability, MDPI, vol. 5(6), pages 1-19, June.
    16. Efstratios Loizou & Piotr Jurga & Stelios Rozakis & Antoni Faber, 2019. "Assessing the Potentials of Bioeconomy Sectors in Poland Employing Input-Output Modeling," Sustainability, MDPI, vol. 11(3), pages 1-12, January.
    17. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    18. Stefania Bracco & Ozgul Calicioglu & Marta Gomez San Juan & Alessandro Flammini, 2018. "Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    19. Van Schoubroeck, Sophie & Van Dael, Miet & Van Passel, Steven & Malina, Robert, 2018. "A review of sustainability indicators for biobased chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 115-126.
    20. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    21. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    22. Claire S. Boland & Robb Kleine & Gregory A. Keoleian & Ellen C. Lee & Hyung Chul Kim & Timothy J. Wallington, 2016. "Life Cycle Impacts of Natural Fiber Composites for Automotive Applications: Effects of Renewable Energy Content and Lightweighting," Journal of Industrial Ecology, Yale University, vol. 20(1), pages 179-189, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Holzer & Claudia Mair-Bauernfeind & Michael Kriechbaum & Romana Rauter & Tobias Stern, 2023. "Different but the Same? Comparing Drivers and Barriers for Circular Economy Innovation Systems in Wood- and Plastic-Based Industries," Circular Economy and Sustainability, Springer, vol. 3(2), pages 983-1011, June.
    2. Giurca, Alexandru & Befort, Nicolas, 2023. "Deconstructing substitution narratives: The case of bioeconomy innovations from the forest-based sector," Ecological Economics, Elsevier, vol. 207(C).
    3. Jonsson, Ragnar & Rinaldi, Francesca & Pilli, Roberto & Fiorese, Giulia & Hurmekoski, Elias & Cazzaniga, Noemi & Robert, Nicolas & Camia, Andrea, 2021. "Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    4. Provin, Ana Paula & Dutra, Ana Regina de Aguiar & de Sousa e Silva Gouveia, Isabel Cristina Aguiar & Cubas, e Anelise Leal Vieira, 2021. "Circular economy for fashion industry: Use of waste from the food industry for the production of biotextiles," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    5. Sören Richter & Nora Szarka & Alberto Bezama & Daniela Thrän, 2022. "What Drives a Future German Bioeconomy? A Narrative and STEEPLE Analysis for Explorative Characterisation of Scenario Drivers," Sustainability, MDPI, vol. 14(5), pages 1-32, March.
    6. Hetemäki, L. & D'Amato, D. & Giurca, A. & Hurmekoski, E., 2024. "Synergies and trade-offs in the European forest bioeconomy research: State of the art and the way forward," Forest Policy and Economics, Elsevier, vol. 163(C).
    7. Sebastián Leavy & Gabriela Allegretti & Elen Presotto & Marco Antonio Montoya & Edson Talamini, 2024. "Measuring the Bioeconomy Economically: Exploring the Connections between Concepts, Methods, Data, Indicators and Their Limitations," Sustainability, MDPI, vol. 16(20), pages 1-32, October.
    8. Sandija Zeverte-Rivza & Laura Girdziute & Agnieszka Parlińska & Peteris Rivza & Anastasija Novikova & Ina Gudele, 2023. "Digitalisation in Bioeconomy in the Baltic States and Poland," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    9. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    2. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    3. Benoit Mougenot & Jean-Pierre Doussoulin, 2022. "Conceptual evolution of the bioeconomy: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1031-1047, January.
    4. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    5. Walther Zeug & Alberto Bezama & Urs Moesenfechtel & Anne Jähkel & Daniela Thrän, 2019. "Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    6. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    7. Christina-Ioanna Papadopoulou & Efstratios Loizou & Katerina Melfou & Fotios Chatzitheodoridis, 2021. "The Knowledge Based Agricultural Bioeconomy: A Bibliometric Network Analysis," Energies, MDPI, vol. 14(20), pages 1-15, October.
    8. Liobikiene, Genovaite & Chen, Xueli & Streimikiene, Dalia & Balezentis, Tomas, 2020. "The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach," Land Use Policy, Elsevier, vol. 91(C).
    9. Raphael Asada & Tamás Krisztin & Fulvio di Fulvio & Florian Kraxner & Tobias Stern, 2020. "Bioeconomic transition?: Projecting consumption‐based biomass and fossil material flows to 2050," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1059-1073, October.
    10. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    11. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    12. Simen Pedersen & Kristin E. Gangås & Madhu Chetri & Harry P. Andreassen, 2020. "Economic Gain vs. Ecological Pain—Environmental Sustainability in Economies Based on Renewable Biological Resources," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    13. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    14. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    15. Sebastian Hinderer & Leif Brändle & Andreas Kuckertz, 2021. "Transition to a Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    16. Asada, Raphael & Stern, Tobias, 2018. "Competitive Bioeconomy? Comparing Bio-based and Non-bio-based Primary Sectors of the World," Ecological Economics, Elsevier, vol. 149(C), pages 120-128.
    17. Idiano D’Adamo & Pasquale Marcello Falcone & Enrica Imbert & Piergiuseppe Morone, 2022. "Exploring regional transitions to the bioeconomy using a socio-economic indicator: the case of Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(3), pages 989-1021, October.
    18. Lovrić, Nataša & Lovrić, Marko & Mavsar, Robert, 2020. "Factors behind development of innovations in European forest-based bioeconomy," Forest Policy and Economics, Elsevier, vol. 111(C).
    19. Florian Siekmann & Sandra Venghaus, 2024. "Regional transformation pathways for the bioeconomy: A novel monitoring approach for complex transitions," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 603-616, June.
    20. repec:aud:audfin:v:21:y:2019:i:50:p:9 is not listed on IDEAS
    21. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:153:y:2020:i:c:s0040162519316075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.