IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v142y2019icp333-346.html
   My bibliography  Save this article

Understanding user representations, a new development path for supporting Smart City policy: Evaluation of the electric car use in Lorraine Region

Author

Listed:
  • Dupont, Laurent
  • Hubert, Julien
  • Guidat, Claudine
  • Camargo, Mauricio

Abstract

Today electric car and Smart Grid are potential elements of any ‘Smart City’ initiative. According to several recent studies, French citizens are ready to purchase an electric car. Despite of these positive figures, sales of the electric cars are not really taking-off, but slightly increasing. Although, previous studies have identified motivation and barriers for the diffusion of electric cars (EC), we hypothesise, that the analysis of the a priori knowledge of the actors, in particular the users, can be enriched and it will provide a new understanding of the spread of EC. However, there is no studies explaining the types of representations people have of the EC, particularly for non-users, in order to have a better consideration of individuals, not so much as consumers or users, but rather as citizens. Thus, this paper explores the determining factors that determine how social groups perceive the emerging technology of EC and thus provide elements about a potential acceptability enabling its dissemination. In order to achieve this, this paper proposes a new approach based on the use of the AttrakDiff-2 questionnaire, a specific User eXperience (UX) method. This method assesses four different but complementary aspects of the social representation: the possibility of action of the subject on the system; the stimulation, caused, by the system; how the user will identify with the system and, the overall attraction. Data about the social representations of electric car for 131 potential users in the Lorraine Region of France were collected and analysed. Results show that there are differences of user representation regarding the socio-demographic variables. The proposed approach will provide relevant inputs to the infrastructure network design and Smart City policy decision makers.

Suggested Citation

  • Dupont, Laurent & Hubert, Julien & Guidat, Claudine & Camargo, Mauricio, 2019. "Understanding user representations, a new development path for supporting Smart City policy: Evaluation of the electric car use in Lorraine Region," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 333-346.
  • Handle: RePEc:eee:tefoso:v:142:y:2019:i:c:p:333-346
    DOI: 10.1016/j.techfore.2018.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518308795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.10.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric von Hippel, 1986. "Lead Users: A Source of Novel Product Concepts," Management Science, INFORMS, vol. 32(7), pages 791-805, July.
    2. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    3. Antti Salovaara & Sacha Helfenstein & Antti Oulasvirta, 2011. "Everyday appropriations of information technology: A study of creative uses of digital cameras," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(12), pages 2347-2363, December.
    4. Vanessa Oltra & Maïder Saint Jean, 2009. "Innovations environnementales et dynamique industrielle," Post-Print hal-00391531, HAL.
    5. Laurent Dupont & Laure Morel & Claudine Guidat, 2015. "Innovative public-private partnership to support Smart City: the case of “Chaire REVES”," Post-Print hal-01332233, HAL.
    6. Antti Salovaara & Sacha Helfenstein & Antti Oulasvirta, 2011. "Everyday appropriations of information technology: A study of creative uses of digital cameras," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(12), pages 2347-2363, December.
    7. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    8. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    9. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lindgren, Thomas & Pink, Sarah & Fors, Vaike, 2021. "Fore-sighting autonomous driving - An Ethnographic approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    3. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    2. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    3. Maxim Kotsemir & Alexander Abroskin & Dirk Meissner, 2013. "Innovation concepts and typology – an evolutionary discussion," HSE Working papers WP BRP 05/STI/2013, National Research University Higher School of Economics.
    4. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    5. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    6. De Marchi, Valentina, 2012. "Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms," Research Policy, Elsevier, vol. 41(3), pages 614-623.
    7. Nathalie Lazaric & Jun Jin & Ali Douai & Cécile Ayerbe, 2014. "Role of Users in the Developing Eco-Innovation: Comparative case research in China and France," Post-Print halshs-01070168, HAL.
    8. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    9. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    10. Emanuele Bardone & Ilya Shmorgun, 2013. "Ecologies of creativity: smartphones as a case in point," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 12(1), pages 125-135, June.
    11. Karakaya, Emrah & Hidalgo, Antonio & Nuur, Cali, 2015. "Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1090-1098.
    12. Marko Emanović & Martina Jakara & Danijela Barić, 2022. "Challenges and Opportunities for Future BEVs Adoption in Croatia," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    13. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    14. Buranelli de Oliveira, Marina & Moretti Ribeiro da Silva, Hermes & Jugend, Daniel & De Camargo Fiorini, Paula & Paro, Carlos Eduardo, 2022. "Factors influencing the intention to use electric cars in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 418-433.
    15. Wolf, Ingo & Schröder, Tobias, 2019. "Connotative meanings of sustainable mobility: A segmentation approach using cultural sentiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 259-280.
    16. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    17. Udit Chawla & Rajesh Mohnot & Varsha Mishra & Harsh Vikram Singh & Ayush Kumar Singh, 2023. "Factors Influencing Customer Preference and Adoption of Electric Vehicles in India: A Journey towards More Sustainable Transportation," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    18. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    19. Giansoldati, Marco & Monte, Adriana & Scorrano, Mariangela, 2020. "Barriers to the adoption of electric cars: Evidence from an Italian survey," Energy Policy, Elsevier, vol. 146(C).
    20. Claude Paraponaris, 2017. "Plateformes numériques, conception ouverte et emploi," Post-Print halshs-01614430, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:142:y:2019:i:c:p:333-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.