IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v116y2017icp1-12.html
   My bibliography  Save this article

Rate equation leading to hype-type evolution curves: A mathematical approach in view of analysing technology development

Author

Listed:
  • Silvestrini, Paolo
  • Amato, Umberto
  • Vettoliere, Antonio
  • Silvestrini, Stefano
  • Ruggiero, Berardo

Abstract

The theoretical understanding of Gartner's “hype curve” is an interesting open question in deciding the strategic actions to adopt in presence of an incoming technology. In order to describe the hype behaviour quantitatively, we propose a mathematical approach based on a rate equation, similar to that used to describe quantum level transitions. The model is able to describe the hype curve evolution in many relevant conditions, which can be associated to various market parameters. Different hype curves, describing the time evolution of a new technology market penetration, are then obtained within a single coherent mathematical approach. We have also used our theoretical model to describe the time evolution of the number of scientific publications in different fields of scientific research. Data are well described by our model, so we present a statistical analysis and forecasting potentiality of our approach. We note that the hype peak of inflated expectations is very smooth in the case of scientific publications, probably due to the high level of awareness and the deep preliminary understanding which is necessary to carry on a research project. Our model is anyway flexible enough to describe many patterns of increasing interest on a new idea, leading to a hype behaviour or other time evolution.

Suggested Citation

  • Silvestrini, Paolo & Amato, Umberto & Vettoliere, Antonio & Silvestrini, Stefano & Ruggiero, Berardo, 2017. "Rate equation leading to hype-type evolution curves: A mathematical approach in view of analysing technology development," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 1-12.
  • Handle: RePEc:eee:tefoso:v:116:y:2017:i:c:p:1-12
    DOI: 10.1016/j.techfore.2016.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516306667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
    3. Shlomo Kalish, 1985. "A New Product Adoption Model with Price, Advertising, and Uncertainty," Management Science, INFORMS, vol. 31(12), pages 1569-1585, December.
    4. van Lente, Harro & Spitters, Charlotte & Peine, Alexander, 2013. "Comparing technological hype cycles: Towards a theory," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1615-1628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, Fariba & Gallay, Olivier & Hongler, Max-Olivier, 2021. "Opinion formation dynamics — Swift collective disillusionment triggered by unmet expectations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Chaab, Jafar & Salhab, Rabih & Zaccour, Georges, 2022. "Dynamic pricing and advertising in the presence of strategic consumers and social contagion: A mean-field game approach," Omega, Elsevier, vol. 109(C).
    3. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    4. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    5. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
    6. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.
    7. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    8. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    9. Darghouth, M.N. & Ait-kadi, D. & Chelbi, A., 2017. "Joint optimization of design, warranty and price for products sold with maintenance service contracts," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 197-208.
    10. Vakratsas, Demetrios & Kolsarici, Ceren, 2008. "A dual-market diffusion model for a new prescription pharmaceutical," International Journal of Research in Marketing, Elsevier, vol. 25(4), pages 282-293.
    11. Hariharan, Vijay Ganesh & Talukdar, Debabrata & Kwon, Changhyun, 2015. "Optimal targeting of advertisement for new products with multiple consumer segments," International Journal of Research in Marketing, Elsevier, vol. 32(3), pages 263-271.
    12. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    13. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    14. Teck-Hua Ho & Shan Li & So-Eun Park & Zuo-Jun Max Shen, 2012. "Customer Influence Value and Purchase Acceleration in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 236-256, March.
    15. Orbach Yair & Fruchter Gila E., 2010. "A Utility-Based Diffusion Model Applied to the Digital Camera Case," Review of Marketing Science, De Gruyter, vol. 8(1), pages 1-28, June.
    16. Ding, Fei & Liu, Yun, 2009. "A decision theoretical approach for diffusion promotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3572-3580.
    17. Sang-Gun Lee & Eui-bang Lee & Chang-Gyu Yang, 2014. "Strategies for ICT product diffusion: the case of the Korean mobile communications market," Service Business, Springer;Pan-Pacific Business Association, vol. 8(1), pages 65-81, March.
    18. Yogesh V. Joshi & David J. Reibstein & Z. John Zhang, 2009. "Optimal Entry Timing in Markets with Social Influence," Management Science, INFORMS, vol. 55(6), pages 926-939, June.
    19. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    20. Yuichiro Kamada & Aniko Öry, 2020. "Contracting with Word-of-Mouth Management," Management Science, INFORMS, vol. 66(11), pages 5094-5107, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:116:y:2017:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.