IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v51y2019icp405-426.html
   My bibliography  Save this article

Evolution patterns and network structural characteristics of industry convergence

Author

Listed:
  • Heo, Pil Sun
  • Lee, Duk Hee

Abstract

We measured industry convergence both as a supply-driven (technology) process and as a demand-driven (market) process, and we analyzed backbone networks of convergence to reveal the structural characteristics of inter-industry connections. By utilizing Korea’s Input-Output Tables (IOTs), we analyzed inter-industry convergence for 29 industries (6 industry groups) in total. As a result, we discerned groups of industries having a high level of convergence with one another, designated as ‘industry convergence groups.’ Furthermore, industries were either dynamic or static in their relationships of convergence with other industries. At a global level, convergence increasingly tended to be concentrated in ‘groups of central industries.’ At a local level, the analysis of networking types showed that there is a trend of stagnation on internal-oriented convergence from both the demand-side and supply-side perspectives. We also discuss the importance of industries that mediate the convergence process. This study contributes to the body of theoretical knowledge on industry convergence by broadening the breadth of convergence research to the structural aspect of networks. In addition, important implications are presented for effective and differentiated future policies for effectively steering the industry convergence system as a whole as well as networking activity in individual industries.

Suggested Citation

  • Heo, Pil Sun & Lee, Duk Hee, 2019. "Evolution patterns and network structural characteristics of industry convergence," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 405-426.
  • Handle: RePEc:eee:streco:v:51:y:2019:i:c:p:405-426
    DOI: 10.1016/j.strueco.2019.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X1730036X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2019.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rohman, Ibrahim Kholilul, 2013. "The globalization and stagnation of the ICT sectors in European countries: An input-output analysis," Telecommunications Policy, Elsevier, vol. 37(4), pages 387-399.
    2. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    3. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    4. M. Serrano & Marián Boguñá & Alessandro Vespignani, 2007. "Patterns of dominant flows in the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 111-124, December.
    5. Gambardella, Alfonso & Torrisi, Salvatore, 1998. "Does technological convergence imply convergence in markets? Evidence from the electronics industry," Research Policy, Elsevier, vol. 27(5), pages 445-463, September.
    6. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    7. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    8. García-Muñiz, Ana Salomé & Vicente, María Rosalía, 2014. "ICT technologies in Europe: A study of technological diffusion and economic growth under network theory," Telecommunications Policy, Elsevier, vol. 38(4), pages 360-370.
    9. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
    10. Xing, Wan & Ye, Xuan & Kui, Lv, 2011. "Measuring convergence of China's ICT industry: An input-output analysis," Telecommunications Policy, Elsevier, vol. 35(4), pages 301-313, May.
    11. M. Angeles Serrano & Marian Boguna & Alessandro Vespignani, 2007. "Patterns of dominant flows in the world trade web," Papers 0704.1225, arXiv.org.
    12. Fredrik Hacklin & Martin W. Wallin, 2013. "Convergence and interdisciplinarity in innovation management: a review, critique, and future directions," The Service Industries Journal, Taylor & Francis Journals, vol. 33(7-8), pages 774-788, May.
    13. Kim, Namil & Lee, Hyeokseong & Kim, Wonjoon & Lee, Hyunjong & Suh, Jong Hwan, 2015. "Dynamic patterns of industry convergence: Evidence from a large amount of unstructured data," Research Policy, Elsevier, vol. 44(9), pages 1734-1748.
    14. William Baumol, 2000. "Leontief's Great Leap Forward: Beyond Quesnay, Marx and von Bortkiewicz," Economic Systems Research, Taylor & Francis Journals, vol. 12(2), pages 141-152.
    15. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    16. Jaffe, Adam B., 1989. "Characterizing the "technological position" of firms, with application to quantifying technological opportunity and research spillovers," Research Policy, Elsevier, vol. 18(2), pages 87-97, April.
    17. Katz, Michael L, 1996. "Remarks on the Economic Implications of Convergence," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 5(4), pages 1079-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    3. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    4. Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad & Dong, Xiucheng, 2023. "Does industrial convergence mitigate CO2 emissions in China? A quasi-natural experiment on “Triple Play” Reform," Energy Economics, Elsevier, vol. 128(C).
    5. Chunbo Zhou & Marios Sotiriadis, 2021. "Exploring and Evaluating the Impact of ICTs on Culture and Tourism Industries’ Convergence: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    6. Jianjia He & Yue Wang, 2023. "Patent-Based Analysis of China’s Emergency Logistics Industry Convergence," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    7. Domínguez, Alvaro & Santos-Marquez, Felipe & Mendez, Carlos, 2021. "Sectoral productivity convergence, input-output structure and network communities in Japan," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 582-599.
    8. Zhang, Wei & Zhang, Ting & Li, Hangyu & Zhang, Han, 2022. "Dynamic spillover capacity of R&D and digital investments in China's manufacturing industry under long-term technological progress based on the industry chain perspective," Technology in Society, Elsevier, vol. 71(C).
    9. Carlos Bianchi & Pablo Galaso & Sergio Palomeque, 2023. "Knowledge complexity and brokerage in inter-city networks," The Journal of Technology Transfer, Springer, vol. 48(5), pages 1773-1799, October.
    10. Geyao Yang & Changchun Zhou & Jiekuan Zhang, 2023. "Does industry convergence between agriculture and related sectors alleviate rural poverty: evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12887-12914, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    2. Geum, Youngjung & Kim, Moon-Soo & Lee, Sungjoo, 2016. "How industrial convergence happens: A taxonomical approach based on empirical evidences," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 112-120.
    3. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Jae Young Choi & Seongkyoon Jeong & Kyunam Kim, 2015. "A Study on Diffusion Pattern of Technology Convergence: Patent Analysis for Korea," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    5. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    6. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    7. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    8. Basole, Rahul C. & Park, Hyunwoo & Barnett, Brandon C., 2015. "Coopetition and convergence in the ICT ecosystem," Telecommunications Policy, Elsevier, vol. 39(7), pages 537-552.
    9. Pan, Maomao & Bai, Min & Ren, Xiaoxiao, 2022. "Does internet convergence improve manufacturing enterprises’ competitive advantage? Empirical research based on the mediation effect model," Technology in Society, Elsevier, vol. 69(C).
    10. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    11. Chunbo Zhou & Marios Sotiriadis, 2021. "Exploring and Evaluating the Impact of ICTs on Culture and Tourism Industries’ Convergence: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    12. Lee, Hyunmin, 2023. "Converging technology to improve firm innovation competencies and business performance: Evidence from smart manufacturing technologies," Technovation, Elsevier, vol. 123(C).
    13. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    14. Lorenz, Steffi, 2015. "Diversität und Verbundenheit der unternehmerischen Wissensbasis: Ein neuartiger Messansatz mit Indikatoren aus Innovationsprojekten," Discussion Papers on Strategy and Innovation 15-01, Philipps-University Marburg, Department of Technology and Innovation Management (TIM).
    15. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    16. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    17. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    18. Dong Hyun Lee & Ga Youn Hong & Sang-Gun Lee, 2019. "The relationship among competitive advantage, catch-up, and linkage effects: a comparative study on ICT industry between South Korea and India," Service Business, Springer;Pan-Pacific Business Association, vol. 13(3), pages 603-624, September.
    19. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Sebastian Eidam & Anja Redenz & David Sonius & Nicole vom Stein, 2017. "Ubiquitous Healthcare — Do the Health and Information Technology Sectors Converge?," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:51:y:2019:i:c:p:405-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.