IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v99y2015icp135-142.html
   My bibliography  Save this article

Optimal jackknife for unit root models

Author

Listed:
  • Chen, Ye
  • Yu, Jun

Abstract

A new jackknife method is introduced to remove the first order bias in unit root models. It is optimal in the sense that it minimizes the variance among all the jackknife estimators of the form considered in Phillips and Yu (2005) and Chambers and Kyriacou (2013) after the number of subsamples is selected. Simulations show that the new jackknife reduces the variance of that of Chambers and Kyriacou by about 10% for any selected number of subsamples without compromising bias reduction. The results continue to hold true in near unit root models.

Suggested Citation

  • Chen, Ye & Yu, Jun, 2015. "Optimal jackknife for unit root models," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 135-142.
  • Handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:135-142
    DOI: 10.1016/j.spl.2014.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214004179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    2. Chambers, Marcus J., 2013. "Jackknife estimation of stationary autoregressive models," Journal of Econometrics, Elsevier, vol. 172(1), pages 142-157.
    3. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    6. Phillips, Peter C.B. & Magdalinos, Tassos, 2009. "Unit Root And Cointegrating Limit Theory When Initialization Is In The Infinite Past," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1682-1715, December.
    7. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    8. Bao, Yong & Ullah, Aman & Zinde-Walsh, Victoria, 2013. "On existence of moment of mean reversion estimator in linear diffusion models," Economics Letters, Elsevier, vol. 120(2), pages 146-148.
    9. Chambers, Marcus J. & Kyriacou, Maria, 2013. "Jackknife estimation with a unit root," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1677-1682.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanchana Nadarajah & Gael M Martin & Donald S Poskitt, 2019. "Optimal Bias Correction of the Log-periodogram Estimator of the Fractional Parameter: A Jackknife Approach," Monash Econometrics and Business Statistics Working Papers 7/19, Monash University, Department of Econometrics and Business Statistics.
    2. H. Peter Boswijk & Jun Yu & Yang Zu, 2024. "Testing for an Explosive Bubble using High-Frequency Volatility," Working Papers 202402, University of Macau, Faculty of Business Administration.
    3. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    4. Marcus J. Chambers & Maria Kyriacou, 2018. "Jackknife Bias Reduction in the Presence of a Near-Unit Root," Econometrics, MDPI, vol. 6(1), pages 1-28, March.
    5. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcus J. Chambers & Maria Kyriacou, 2018. "Jackknife Bias Reduction in the Presence of a Near-Unit Root," Econometrics, MDPI, vol. 6(1), pages 1-28, March.
    2. Ye Chen & Jun Yu, 2011. "Optimal Jackknife for Discrete Time and Continuous Time Unit Root Models," Working Papers 12-2011, Singapore Management University, School of Economics.
    3. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Marcus J. Chambers, 2015. "A Jackknife Correction to a Test for Cointegration Rank," Econometrics, MDPI, vol. 3(2), pages 1-21, May.
    6. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    7. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2009. "Computationally Efficient Recursions For Top-Order Invariant Polynomials With Applications," Econometric Theory, Cambridge University Press, vol. 25(1), pages 211-242, February.
    8. Iglesias, Emma M., 2014. "Testing of the mean reversion parameter in continuous time models," Economics Letters, Elsevier, vol. 122(2), pages 187-189.
    9. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    10. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    11. Haitham A. Al-Zoubi, 2024. "An affine model for short rates when monetary policy is path dependent," Review of Derivatives Research, Springer, vol. 27(2), pages 151-201, July.
    12. Zi‐Yi Guo, 2021. "Out‐of‐sample performance of bias‐corrected estimators for diffusion processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 243-268, March.
    13. Chambers, Marcus J. & Kyriacou, Maria, 2013. "Jackknife estimation with a unit root," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1677-1682.
    14. Peter C. B. Phillips, 2021. "Pitfalls in Bootstrapping Spurious Regression," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 163-217, December.
    15. Emma M. Iglesias & Garry D. A. Phillips, 2020. "Further Results on Pseudo‐Maximum Likelihood Estimation and Testing in the Constant Elasticity of Variance Continuous Time Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 357-364, March.
    16. Aman Ullah & Yong Bao & Yun Wang, 2014. "Exact Distribution of the Mean Reversion Estimator in the Ornstein-Uhlenbeck Process," Working Papers 201413, University of California at Riverside, Department of Economics.
    17. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    18. Kruse, Yves Robinson & Kaufmann, Hendrik, 2015. "Bias-corrected estimation in mildly explosive autoregressions," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112897, Verein für Socialpolitik / German Economic Association.
    19. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    20. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:135-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.