IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i5p1012-1020.html
   My bibliography  Save this article

On distribution of randomly ordered uniform incremental weighted averages: Divided difference approach

Author

Listed:
  • Soltani, Ahmad Reza
  • Roozegar, Rasool

Abstract

In this article we employ certain techniques in divided differences to relate the generalized Stieltjes transform of the distribution of a randomly weighted average of independent random variables X1,…,Xm to the generalized Stieltjes transforms of the distribution functions F1,…,Fm; Xi∼Fi,i=1,…,m. The random weights are assumed to be cuts of [0,1] by m−1 ordered statistics of independent and identically uniformly distributed random variables U1,…,Un on [0,1]; m≤n. Soltani and Homei (2009) treated the case m=n using the Schwartz distribution theory. We identified fairly large classes of randomly weighted average distributions by their generalized Stieltjes transforms; in particular including the uniform, Wigner and certain power semicircle distributions.

Suggested Citation

  • Soltani, Ahmad Reza & Roozegar, Rasool, 2012. "On distribution of randomly ordered uniform incremental weighted averages: Divided difference approach," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 1012-1020.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:5:p:1012-1020
    DOI: 10.1016/j.spl.2012.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. Morganna Carmem Diniz & Edmundo de Souza e Silva & H. Richard Gail, 2002. "Calculating the Distribution of a Linear Combination of Uniform Order Statistics," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 124-131, May.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. Karlin, S. & Micchelli, C. A. & Rinott, Y., 1986. "Multivariate splines: A probabilistic perspective," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 69-90, October.
    5. Soltani, A.R. & Homei, H., 2009. "Weighted averages with random proportions that are jointly uniformly distributed over the unit simplex," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1215-1218, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltani, A.R., 2022. "Recursive integral equations for random weights averages: Exponential functions and Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 190(C).
    2. Hazhir Homei, 2015. "A novel extension of randomly weighted averages," Statistical Papers, Springer, vol. 56(4), pages 933-946, November.
    3. Julian Górny & Erhard Cramer, 2019. "From B-spline representations to gamma representations in hybrid censoring," Statistical Papers, Springer, vol. 60(4), pages 1119-1135, August.
    4. Roozegar, Rasool & zarch, Hamid Reza Taherizadeh, 2021. "On the asymptotic distribution of randomly weighted averages of random vectors," Statistics & Probability Letters, Elsevier, vol. 179(C).
    5. Roozegar, Rasool & Soltani, A.R., 2015. "On the asymptotic behavior of randomly weighted averages," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 269-272.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    3. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    4. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    5. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    6. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    7. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2020. "Can Volatility Solve the Naive Portfolio Puzzle?," Papers 2005.03204, arXiv.org, revised Feb 2022.
    8. Hurlin, Christophe & Iseli, Grégoire & Pérignon, Christophe & Yeung, Stanley, 2019. "The counterparty risk exposure of ETF investors," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 215-230.
    9. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    10. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    11. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    12. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    13. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    14. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    15. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    16. Zhou, Jian, 2014. "Modeling conditional covariance for mixed-asset portfolios," Economic Modelling, Elsevier, vol. 40(C), pages 242-249.
    17. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    18. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    19. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    20. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:5:p:1012-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.