IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i11p1978-1985.html
   My bibliography  Save this article

Rate of complete convergence for maximums of moving average sums of martingale difference fields in Banach spaces

Author

Listed:
  • Son, Ta Cong
  • Thang, Dang Hung
  • Dung, Le Van

Abstract

We obtain the rate of complete convergence for maximums of moving average sums of martingale difference fields in p-uniformly smooth Banach spaces, and extend Marcinkiewicz–Zygmund strong laws. Our results extend the results of Gut and Stadtmüller (2009), Quang and Huan (2009), Dung and Tien (2010) and some other ones.

Suggested Citation

  • Son, Ta Cong & Thang, Dang Hung & Dung, Le Van, 2012. "Rate of complete convergence for maximums of moving average sums of martingale difference fields in Banach spaces," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1978-1985.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:11:p:1978-1985
    DOI: 10.1016/j.spl.2012.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Deli & Bhaskara Rao, M. & Wang, Xiangchen, 1992. "Complete convergence of moving average processes," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 111-114, May.
    2. Dung, Le Van & Tien, Nguyen Duy, 2010. "Strong laws of large numbers for random fields in martingale type p Banach spaces," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 756-763, May.
    3. Quang, Nguyen Van & Huan, Nguyen Van, 2009. "On the strong law of large numbers and -convergence for double arrays of random elements in p-uniformly smooth Banach spaces," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1891-1899, September.
    4. Gut, Allan & Stadtmüller, Ulrich, 2009. "An asymmetric Marcinkiewicz-Zygmund LLN for random fields," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1016-1020, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Son, Ta Cong & Thang, Dang Hung, 2013. "The Brunk–Prokhorov strong law of large numbers for fields of martingale differences taking values in a Banach space," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1901-1910.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhashis Ghosal & Tapas K. Chandra, 1998. "Complete Convergence of Martingale Arrays," Journal of Theoretical Probability, Springer, vol. 11(3), pages 621-631, July.
    2. Wenzhi Yang & Shuhe Hu & Xuejun Wang, 2012. "Complete Convergence for Moving Average Process of Martingale Differences," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-16, July.
    3. Quang, Nguyen Van & Nguyen, Pham Tri, 2015. "Some strong laws of large number for double array of random upper semicontinuous functions in convex combination spaces," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 85-94.
    4. Yun-xia, Li & Li-xin, Zhang, 2004. "Complete moment convergence of moving-average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 191-197, December.
    5. Yun-Xia, Li, 2006. "Precise asymptotics in complete moment convergence of moving-average processes," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1305-1315, July.
    6. Jong-Il Baek & Sung-Tae Park, 2010. "RETRACTED ARTICLE: Convergence of Weighted Sums for Arrays of Negatively Dependent Random Variables and Its Applications," Journal of Theoretical Probability, Springer, vol. 23(2), pages 362-377, June.
    7. Ahmed, S. Ejaz & Antonini, Rita Giuliano & Volodin, Andrei, 2002. "On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 185-194, June.
    8. Zhang, Li-Xin, 1996. "Complete convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 165-170, October.
    9. Sung, Soo Hak, 1999. "Weak law of large numbers for arrays of random variables," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 293-298, April.
    10. Zhou, Xingcai, 2010. "Complete moment convergence of moving average processes under [phi]-mixing assumptions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 285-292, March.
    11. Allan Gut & Ulrich Stadtmüller, 2010. "Cesàro Summation for Random Fields," Journal of Theoretical Probability, Springer, vol. 23(3), pages 715-728, September.
    12. Kim, Tae-Sung & Ko, Mi-Hwa, 2008. "Complete moment convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 839-846, May.
    13. Berkes, István & Weber, Michel, 2007. "On complete convergence of triangular arrays of independent random variables," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 952-963, June.
    14. Chen, Pingyan & Hu, Tien-Chung & Volodin, Andrei, 2009. "Limiting behaviour of moving average processes under [phi]-mixing assumption," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 105-111, January.
    15. Sung, Soo Hak, 2007. "Complete convergence for weighted sums of random variables," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 303-311, February.
    16. Castaing, Charles & Quang, Nguyen Van & Thuan, Nguyen Tran, 2012. "A new family of convex weakly compact valued random variables in Banach space and applications to laws of large numbers," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 84-95.
    17. Liu, Xiangdong & Qian, Hangyong & Cao, Linqiu, 2015. "The Davis–Gut law for moving average processes," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 1-6.
    18. Dung, Le Van & Tien, Nguyen Duy, 2010. "Strong laws of large numbers for random fields in martingale type p Banach spaces," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 756-763, May.
    19. Sung, Soo Hak, 2009. "A note on the complete convergence of moving average processes," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1387-1390, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:11:p:1978-1985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.