IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i18p1891-1899.html
   My bibliography  Save this article

On the strong law of large numbers and -convergence for double arrays of random elements in p-uniformly smooth Banach spaces

Author

Listed:
  • Quang, Nguyen Van
  • Huan, Nguyen Van

Abstract

The aim of this paper is to establish some strong laws of large numbers and -convergence for double arrays of random elements in p-uniformly smooth Banach spaces. We also provide a new characterization of p-uniformly smooth Banach spaces in terms of a strong law of large numbers for double arrays.

Suggested Citation

  • Quang, Nguyen Van & Huan, Nguyen Van, 2009. "On the strong law of large numbers and -convergence for double arrays of random elements in p-uniformly smooth Banach spaces," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1891-1899, September.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:18:p:1891-1899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00196-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, André & Rosalsky, Andrew & Volodin, Andrej I., 1997. "A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces," Statistics & Probability Letters, Elsevier, vol. 32(2), pages 167-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castaing, Charles & Quang, Nguyen Van & Thuan, Nguyen Tran, 2012. "A new family of convex weakly compact valued random variables in Banach space and applications to laws of large numbers," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 84-95.
    2. Quang, Nguyen Van & Nguyen, Pham Tri, 2015. "Some strong laws of large number for double array of random upper semicontinuous functions in convex combination spaces," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 85-94.
    3. Son, Ta Cong & Thang, Dang Hung & Dung, Le Van, 2012. "Rate of complete convergence for maximums of moving average sums of martingale difference fields in Banach spaces," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1978-1985.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Dug Hun & Cabrera, Manuel Ordóñez & Sung, Soo Hak & Volodin, Andrei I., 2000. "On the weak law for randomly indexed partial sums for arrays of random elements in martingale type p Banach spaces," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 177-185, January.
    2. Sung, Soo Hak & Hu, Tien-Chung & Volodin, Andrei, 2005. "On the weak laws for arrays of random variables," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 291-298, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:18:p:1891-1899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.