IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1758-1763.html
   My bibliography  Save this article

Tail behaviour of [beta]-TARCH models

Author

Listed:
  • Elek, Péter
  • Márkus, László

Abstract

It is now common knowledge that the simple quadratic ARCH process has a regularly varying tail even when generated by a normally distributed noise, and the tail behaviour is well-understood under more general conditions as well. Much less studied is the case of [beta]-ARCH-type processes, i.e. when the conditional variance is a 2[beta]-power function with 0

Suggested Citation

  • Elek, Péter & Márkus, László, 2010. "Tail behaviour of [beta]-TARCH models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1758-1763, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1758-1763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00214-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    2. Péter Elek & László Márkus, 2008. "A light‐tailed conditionally heteroscedastic model with applications to river flows," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 14-36, January.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    2. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    3. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    4. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    5. Geert Bekaert & Campbell R. Harvey, 2000. "Capital Flows and the Behavior of Emerging Market Equity Returns," NBER Chapters, in: Capital Flows and the Emerging Economies: Theory, Evidence, and Controversies, pages 159-194, National Bureau of Economic Research, Inc.
    6. repec:wyi:journl:002087 is not listed on IDEAS
    7. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    8. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    10. Yok-Yong Lee & M. H. Yahya & A. M. Bany-Ariffin & S. Aslam, 2018. "Leverage Effect and Switching of Market Efficiency Post Goods and Services Tax (GST) Imposition," International Business Research, Canadian Center of Science and Education, vol. 11(3), pages 162-178, March.
    11. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    12. Gerard H. Kuper & Daan P. van Soest, 2006. "Does Oil Price Uncertainty Affect Energy Use?," The Energy Journal, , vol. 27(1), pages 55-78, January.
    13. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    14. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    15. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    16. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    17. Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
    18. He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
    19. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    20. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    21. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1758-1763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.