IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i21-22p1633-1639.html
   My bibliography  Save this article

Parameter estimation in a condition-based maintenance model

Author

Listed:
  • Kim, Michael Jong
  • Makis, Viliam
  • Jiang, Rui

Abstract

A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autoregressive data are obtained through condition monitoring at discrete time points, which gives partial information about the unobservable system state. Two kinds of data histories are considered: histories that end with observable system failure and histories that end when the system is suspended from operation but has not failed. Maximum likelihood estimates of the model parameters are obtained using the EM algorithm and a closed form expression for the pseudo-likelihood function is derived. Numerical results are provided which illustrate the estimation procedure.

Suggested Citation

  • Kim, Michael Jong & Makis, Viliam & Jiang, Rui, 2010. "Parameter estimation in a condition-based maintenance model," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1633-1639, November.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1633-1639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00189-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    2. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Donghui & Wei, Yantao & Fang, Houzhang & Yang, Wenzhi, 2018. "A reliability estimation approach via Wiener degradation model with measurement errors," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 131-141.
    2. Wang, Wenbin, 2012. "A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 218(3), pages 726-734.
    3. Rui Jiang & Michael Kim & Viliam Makis, 2012. "A Bayesian model and numerical algorithm for CBM availability maximization," Annals of Operations Research, Springer, vol. 196(1), pages 333-348, July.
    4. Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moerman, G.A., 2001. "Unpredictable After All? A short note on exchange rate predictability," ERIM Report Series Research in Management ERS-2001-29-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    3. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    4. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    5. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    6. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    7. repec:ipg:wpaper:2014-552 is not listed on IDEAS
    8. Jeremy J. Nalewaik, 2011. "Forecasting recessions using stall speeds," Finance and Economics Discussion Series 2011-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    10. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2015. "Regional and global spillovers and diversification opportunities in the GCC equity sectors," Emerging Markets Review, Elsevier, vol. 24(C), pages 160-187.
    11. Vika Koban, 2017. "The impact of market coupling on Hungarian and Romanian electricity markets: Evidence from the regime-switching model," Energy & Environment, , vol. 28(5-6), pages 621-638, September.
    12. Shehu U.R. Aliyu, 2019. "Do Presidential Elections Affect Stock Market Returns In Nigeria?," West African Journal of Monetary and Economic Integration, West African Monetary Institute, vol. 19(1), pages 40-56, June.
    13. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    14. Rómulo Chumacero & Jorge Quiroz, 1996. "La Tasa Natural de Crecimiento de la Economía Chilena: 1985-1996," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 33(100), pages 453-472.
    15. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    16. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    17. Philippe Charlot & Vêlayoudom Marimoutou, 2011. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model (version révisée)," Working Papers hal-00605965, HAL.
    18. Mehmet Balcilar & Riza Demirer & Shawkat Hammoudeh & Ahmed Khalifa, 2013. "Do Global Shocks Drive Investor Herds in Oil-Rich Frontier Markets?," Working Papers 819, Economic Research Forum, revised Dec 2013.
    19. Battulga Gankhuu, 2022. "Parameter Estimation Methods of Required Rate of Return on Stock," Papers 2206.09657, arXiv.org, revised Jul 2022.
    20. Jeremy J. Nalewaik, 2006. "Estimating probabilities of recession in real time using GDP and GDI," Finance and Economics Discussion Series 2007-07, Board of Governors of the Federal Reserve System (U.S.).
    21. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1633-1639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.