IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i21-22p1606-1611.html
   My bibliography  Save this article

Random self-decomposability and autoregressive processes

Author

Listed:
  • Kozubowski, Tomasz J.
  • Podgórski, Krzysztof

Abstract

We introduce the notion of random self-decomposability and discuss its relation to the concepts of self-decomposability and geometric infinite divisibility. We present its connection with time series autoregressive schemes with a regression coefficient that randomly turns on and off. In particular, we provide a characterization of random self-decomposability as well as that of marginal distributions of stationary time series that follow this scheme. Our results settle an open question related to the existence of such processes.

Suggested Citation

  • Kozubowski, Tomasz J. & Podgórski, Krzysztof, 2010. "Random self-decomposability and autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1606-1611, November.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1606-1611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00175-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Lekshmi & K. Jose, 2004. "An autoregressive process with geometric α-laplace marginals," Statistical Papers, Springer, vol. 45(3), pages 337-350, July.
    2. Tomy, Lishamol & Jose, K.K., 2009. "Generalized normal-Laplace AR process," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1615-1620, July.
    3. Lekshmi, V. Seetha & Jose, K.K., 2006. "Autoregressive processes with Pakes and geometric Pakes generalized Linnik marginals," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 318-326, February.
    4. A. J. Lawrance & P. A. W. Lewis, 1982. "A Mixed Exponential Time Series Model," Management Science, INFORMS, vol. 28(9), pages 1045-1053, September.
    5. Jayakumar, K. & Kuttykrishnan, A.P., 2007. "A time-series model using asymmetric Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1636-1640, October.
    6. Jose, K.K. & Tomy, Lishamol & Sreekumar, J., 2008. "Autoregressive processes with normal-Laplace marginals," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2456-2462, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomy, Lishamol & Jose, K.K., 2009. "Generalized normal-Laplace AR process," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1615-1620, July.
    2. Lekshmi, V. Seetha & Jose, K.K., 2006. "Autoregressive processes with Pakes and geometric Pakes generalized Linnik marginals," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 318-326, February.
    3. Jose, K.K. & Tomy, Lishamol & Sreekumar, J., 2008. "Autoregressive processes with normal-Laplace marginals," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2456-2462, October.
    4. Halvarsson, Daniel, 2013. "On the Estimation of Skewed Geometric Stable Distributions," Ratio Working Papers 216, The Ratio Institute.
    5. Nadjib Bouzar & K. Jayakumar, 2008. "Time series with discrete semistable marginals," Statistical Papers, Springer, vol. 49(4), pages 619-635, October.
    6. Cathy W. S. Chen & Mike K. P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Springer, vol. 67(1), pages 96-124, March.
    7. Satheesh, S. & Sandhya, E. & Rajasekharan, K.E., 2008. "A generalization and extension of an autoregressive model," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1369-1374, September.
    8. Alice B. V. Mello & Maria C. S. Lima & Abraão D. C. Nascimento, 2022. "A notable Gamma‐Lindley first‐order autoregressive process: An application to hydrological data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    9. Mahmood Ul Hassan & Pär Stockhammar, 2016. "Fitting probability distributions to economic growth: a maximum likelihood approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1583-1603, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1606-1611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.