IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i16p1636-1640.html
   My bibliography  Save this article

A time-series model using asymmetric Laplace distribution

Author

Listed:
  • Jayakumar, K.
  • Kuttykrishnan, A.P.

Abstract

Asymmetric Laplace distributions have received much attention in recent years. It can be used in modeling currency exchange rate, interest rate, stock price changes, etc. But no time-series models with asymmetric Laplace marginal are yet developed. Present work aims at developing autoregressive models with asymmetric Laplace marginal distribution.

Suggested Citation

  • Jayakumar, K. & Kuttykrishnan, A.P., 2007. "A time-series model using asymmetric Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1636-1640, October.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:16:p:1636-1640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00390-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel Kotz & Tomasz Kozubowski & Krzysztof Podgórski, 2002. "Maximum Likelihood Estimation of Asymmetric Laplace Parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 816-826, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cathy W. S. Chen & Mike K. P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Springer, vol. 67(1), pages 96-124, March.
    2. Kozubowski, Tomasz J. & Podgórski, Krzysztof, 2010. "Random self-decomposability and autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1606-1611, November.
    3. Mahmood Ul Hassan & Pär Stockhammar, 2016. "Fitting probability distributions to economic growth: a maximum likelihood approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1583-1603, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    2. Wright, Stephen E., 2024. "A note on computing maximum likelihood estimates for the three-parameter asymmetric Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    3. Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, September.
    4. Bruzda, Joanna, 2020. "Demand forecasting under fill rate constraints—The case of re-order points," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1342-1361.
    5. Bera Anil K. & Galvao Antonio F. & Montes-Rojas Gabriel V. & Park Sung Y., 2016. "Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 79-101, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:16:p:1636-1640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.