IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i6p835-841.html
   My bibliography  Save this article

Bounds for the transition density of time-homogeneous diffusion processes

Author

Listed:
  • Downes, A.N.

Abstract

The paper presents new simple sharp bounds for transition density functions for time-homogeneous diffusion processes. The bounds are obtained under mild conditions on the drift and diffusion coefficients, extending and substantially improving previous results in the literature which were limited to drifts satisfying a linear growth condition. They lead to an asymptotic expression for the time t transition density as t-->0. While the focus is on the one-dimensional case, an extension to multiple dimensions is discussed. Results are illustrated by numerical examples.

Suggested Citation

  • Downes, A.N., 2009. "Bounds for the transition density of time-homogeneous diffusion processes," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 835-841, March.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:6:p:835-841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00523-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Zhongmin & Zheng, Weian, 2004. "A representation formula for transition probability densities of diffusions and applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 57-76, May.
    2. Andrew N. Downes & Konstantin Borovkov, 2008. "First Passage Densities and Boundary Crossing Probabilities for Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 621-644, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Zhongmin & Xu, Xingcheng, 2023. "Probability bounds for reflecting diffusion processes," Statistics & Probability Letters, Elsevier, vol. 199(C).
    2. Taguchi, Dai & Tanaka, Akihiro, 2020. "Probability density function of SDEs with unbounded and path-dependent drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5243-5289.
    3. Borovkov, K. & Downes, A.N., 2010. "On boundary crossing probabilities for diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 105-129, February.
    4. Albeverio, S. & Marinelli, C., 2005. "Reconstructing the drift of a diffusion from partially observed transition probabilities," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1487-1502, September.
    5. Zhongmin Qian & Yuhan Yao, 2022. "McKean–Vlasov type stochastic differential equations arising from the random vortex method," Partial Differential Equations and Applications, Springer, vol. 3(1), pages 1-22, February.
    6. Song, Ruili & Ying, Jiangang, 2007. "A formula for transition density function under Girsanov transform," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 658-666, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:6:p:835-841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.