IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v111y2004i1p57-76.html
   My bibliography  Save this article

A representation formula for transition probability densities of diffusions and applications

Author

Listed:
  • Qian, Zhongmin
  • Zheng, Weian

Abstract

We establish a representation formula for the transition probability density of a diffusion perturbed by a vector field, which takes a form of Cameron-Martin's formula for pinned diffusions. As an application, by carefully estimating the mixed moments of a Gaussian process, we deduce explicit, strong lower and upper estimates for the transition probability function of Brownian motion with drift of linear growth.

Suggested Citation

  • Qian, Zhongmin & Zheng, Weian, 2004. "A representation formula for transition probability densities of diffusions and applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 57-76, May.
  • Handle: RePEc:eee:spapps:v:111:y:2004:i:1:p:57-76
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00182-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Zhongmin & Xu, Xingcheng, 2023. "Probability bounds for reflecting diffusion processes," Statistics & Probability Letters, Elsevier, vol. 199(C).
    2. Zhongmin Qian & Yuhan Yao, 2022. "McKean–Vlasov type stochastic differential equations arising from the random vortex method," Partial Differential Equations and Applications, Springer, vol. 3(1), pages 1-22, February.
    3. Song, Ruili & Ying, Jiangang, 2007. "A formula for transition density function under Girsanov transform," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 658-666, March.
    4. Albeverio, S. & Marinelli, C., 2005. "Reconstructing the drift of a diffusion from partially observed transition probabilities," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1487-1502, September.
    5. Downes, A.N., 2009. "Bounds for the transition density of time-homogeneous diffusion processes," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 835-841, March.
    6. Taguchi, Dai & Tanaka, Akihiro, 2020. "Probability density function of SDEs with unbounded and path-dependent drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5243-5289.

    More about this item

    Keywords

    Heat kernel estimates Diffusion;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:111:y:2004:i:1:p:57-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.