IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i2p264-269.html
   My bibliography  Save this article

Further investigation into restricted Kalman filtering

Author

Listed:
  • Pizzinga, Adrian

Abstract

In this paper I return to the issue of estimating linear state space models with constrained state vectors. My endeavor is towards the following tasks: (i) to give a new elementary derivation for restricted Kalman filtering under augmentation of the measurement equation, (ii) to prove the statistical efficiency due to the imposition of restrictions using a geometrical framework, and (iii) to propose an alternative approach for imposing time-invariant restrictions to the estimation of random walk state vectors.

Suggested Citation

  • Pizzinga, Adrian, 2009. "Further investigation into restricted Kalman filtering," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 264-269, January.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:2:p:264-269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00387-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin & B. Quenneville, 1997. "Benchmarking by State Space Models," International Statistical Review, International Statistical Institute, vol. 65(1), pages 23-48, April.
    2. Pizzinga, Adrian & Fernandes, Cristiano, 2006. "State Space Models for Dynamic Style Analysis of Portfolios," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(1), May.
    3. Doran, Howard E. & Rambaldi, Alicia N., 1997. "Applying linear time-varying constraints to econometric models: With an application to demand systems," Journal of Econometrics, Elsevier, vol. 79(1), pages 83-95, July.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. Doran, Howard E, 1992. "Constraining Kalman Filter and Smoothing Estimates to Satisfy Time-Varying Restrictions," The Review of Economics and Statistics, MIT Press, vol. 74(3), pages 568-572, August.
    6. Pandher, Gurupdesh S, 2002. "Forecasting Multivariate Time Series with Linear Restrictions Using Constrained Structural State-Space Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 281-300, July.
    7. Pizzinga, Adrian & Fernandes, Cristiano & Contreras, Sergio, 2008. "Restricted Kalman filtering revisited," Journal of Econometrics, Elsevier, vol. 144(2), pages 428-429, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Pizzinga, 2010. "Constrained Kalman Filtering: Additional Results," International Statistical Review, International Statistical Institute, vol. 78(2), pages 189-208, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Pizzinga, 2010. "Constrained Kalman Filtering: Additional Results," International Statistical Review, International Statistical Institute, vol. 78(2), pages 189-208, August.
    2. Pizzinga, Adrian & Fernandes, Cristiano & Contreras, Sergio, 2008. "Restricted Kalman filtering revisited," Journal of Econometrics, Elsevier, vol. 144(2), pages 428-429, June.
    3. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    4. A. Peyrache & A. N. Rambaldi, 2012. "A State-Space Stochastic Frontier Panel Data Model," CEPA Working Papers Series WP012012, School of Economics, University of Queensland, Australia.
    5. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    6. Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    7. Pizzinga, Adrian & Fernandes, Cristiano, 2006. "State Space Models for Dynamic Style Analysis of Portfolios," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(1), May.
    8. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    9. Homesh Sayal & John A. D. Aston & Duncan Elliott & Hernando Ombao, 2017. "An introduction to applications of wavelet benchmarking with seasonal adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 863-889, June.
    10. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
    11. William A. Barnett & Isaac Kalonda Kanyama, 2013. "Time-varying parameters in the almost ideal demand system and the Rotterdam model: will the best specification please stand up?," Applied Economics, Taylor & Francis Journals, vol. 45(29), pages 4169-4183, October.
    12. Qian, Hang, 2015. "Inequality Constrained State Space Models," MPRA Paper 66447, University Library of Munich, Germany.
    13. repec:kap:iaecre:v:15:y:2009:i:1:p:102-114 is not listed on IDEAS
    14. Wanger, Susanne & Weigand, Roland & Zapf, Ines, 2014. "Revision der IAB-Arbeitszeitrechnung 2014 : Grundlagen, methodische Weiterentwicklungen sowie ausgewählte Ergebnisse im Rahmen der Revision der Volkswirtschaftlichen Gesamtrechnungen," IAB-Forschungsbericht 201409, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    15. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    16. Andrle, Michal, 2012. "Understanding DSGE Filters in Forecasting and Policy Analysis," Dynare Working Papers 16, CEPREMAP.
    17. Li, Gang & Song, Haiyan & Witt, Stephen F., 2006. "Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 22(1), pages 57-71.
    18. Alastair Cunningham & Chris Jeffery & George Kapetanios & Vincent Labhard, 2007. "A State Space Approach To The Policymaker's Data Uncertainty Problem," Money Macro and Finance (MMF) Research Group Conference 2006 168, Money Macro and Finance Research Group.
    19. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    20. Gao, Lei & Mei, Bin, 2013. "Investor attention and abnormal performance of timberland investments in the United States," Forest Policy and Economics, Elsevier, vol. 28(C), pages 60-65.
    21. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:2:p:264-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.