IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i19p1996-2004.html
   My bibliography  Save this article

Inequalities between generalized familywise error rates of a multiple testing procedure

Author

Listed:
  • Gordon, Alexander Y.

Abstract

We consider a multiple testing procedure (MTP) that decides which hypotheses to reject based solely on the observed p-values associated with the hypotheses being tested. Let fk be the exact level at which the MTP weakly controls, under a general and unknown dependence structure of the p-values, the kth generalized familywise error rate--the probability of k or more false rejections. The sequence f1,...,fm, where m is the number of hypotheses being tested, is nonincreasing. We show that if the MTP is monotone (reducing p-values can only increase the number of rejections), then the sequence kfk is nondecreasing. This result pertaining to the weak control of generalized FWERs (all hypotheses are true) carries over to the situation where a limited number of hypotheses may be false.

Suggested Citation

  • Gordon, Alexander Y., 2009. "Inequalities between generalized familywise error rates of a multiple testing procedure," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1996-2004, October.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:19:p:1996-2004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00232-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajit C. Tamhane & Lingyun Liu, 2008. "On weighted Hochberg procedures," Biometrika, Biometrika Trust, vol. 95(2), pages 279-294.
    2. van der Laan Mark J. & Dudoit Sandrine & Pollard Katherine S., 2004. "Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-27, June.
    3. Mark van der Laan & Sandrine Dudoit & Katherine Pollard, 2004. "Multiple Testing. Part III. Procedures for Control of the Generalized Family-Wise Error Rate and Proportion of False Positives," U.C. Berkeley Division of Biostatistics Working Paper Series 1140, Berkeley Electronic Press.
    4. Gordon, Alexander Y. & Salzman, Peter, 2008. "Optimality of the Holm procedure among general step-down multiple testing procedures," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1878-1884, September.
    5. Gordon, Alexander Y., 2007. "Unimprovability of the Bonferroni procedure in the class of general step-up multiple testing procedures," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 117-122, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina C. Bartenschlager & Michael Krapp, 2015. "Theorie und Methoden multipler statistischer Vergleiche," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 107-129, November.
    2. Georg Hahn, 2018. "Closure properties of classes of multiple testing procedures," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 167-178, April.
    3. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    4. G�nther Fink & Margaret McConnell & Sebastian Vollmer, 2014. "Testing for heterogeneous treatment effects in experimental data: false discovery risks and correction procedures," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 6(1), pages 44-57, January.
    5. Irene Castro-Conde & Jacobo Uña-Álvarez, 2015. "Power, FDR and conservativeness of BB-SGoF method," Computational Statistics, Springer, vol. 30(4), pages 1143-1161, December.
    6. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    7. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    8. Merrill Birkner & Sandra Sinisi & Mark van der Laan, 2004. "Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data," U.C. Berkeley Division of Biostatistics Working Paper Series 1161, Berkeley Electronic Press.
    9. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    10. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
    11. de Uña-Alvarez Jacobo, 2012. "The Beta-Binomial SGoF method for multiple dependent tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-32, May.
    12. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    13. van der Laan Mark J. & Hubbard Alan E., 2006. "Quantile-Function Based Null Distribution in Resampling Based Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-30, May.
    14. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    15. Wang, Li & Xu, Xingzhong, 2012. "Step-up procedure controlling generalized family-wise error rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 775-782.
    16. Birkner Merrill D. & Hubbard Alan E. & van der Laan Mark J. & Skibola Christine F. & Hegedus Christine M. & Smith Martyn T., 2006. "Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-24, April.
    17. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    18. Somerville, Paul N. & Hemmelmann, Claudia, 2008. "Step-up and step-down procedures controlling the number and proportion of false positives," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1323-1334, January.
    19. Frank Emmert-Streib & Galina V Glazko, 2011. "Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-6, May.
    20. L. Finos & A. Farcomeni, 2011. "k-FWER Control without p -value Adjustment, with Application to Detection of Genetic Determinants of Multiple Sclerosis in Italian Twins," Biometrics, The International Biometric Society, vol. 67(1), pages 174-181, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:19:p:1996-2004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.