IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i16p2647-2653.html
   My bibliography  Save this article

Missing observation analysis for matrix-variate time series data

Author

Listed:
  • Triantafyllopoulos, K.

Abstract

Bayesian inference is developed for matrix-variate dynamic linear models (MV-DLMs), in order to allow missing observation analysis, of any sub-vector or sub-matrix of the observation time series matrix. We propose modifications of the inverted Wishart and matrix t distributions, replacing the scalar degrees of freedom by a diagonal matrix of degrees of freedom. The MV-DLM is then re-defined and modifications of the updating algorithm for missing observations are suggested.

Suggested Citation

  • Triantafyllopoulos, K., 2008. "Missing observation analysis for matrix-variate time series data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2647-2653, November.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2647-2653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00179-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Garthwaite & Shafeeqah A. Al‐Awadhi, 2001. "Non‐conjugate prior distribution assessment for multivariate normal sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 95-110.
    2. Salvador, Manuel & Gargallo, Pilar, 2004. "Automatic monitoring and intervention in multivariate dynamic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 401-431, October.
    3. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sotiris Bersimis & Kostas Triantafyllopoulos, 2020. "Dynamic Non-parametric Monitoring of Air-Pollution," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1457-1479, December.
    2. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    2. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    3. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    4. Dumas, Bernard & Harvey, Campbell R. & Ruiz, Pierre, 2003. "Are correlations of stock returns justified by subsequent changes in national outputs?," Journal of International Money and Finance, Elsevier, vol. 22(6), pages 777-811, November.
    5. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak factor models and the analysis of high-dimensional time series," Papers 2407.10653, arXiv.org.
    6. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    7. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    8. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    9. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    10. Scott Brave & R. Andrew Butters, 2014. "Nowcasting Using the Chicago Fed National Activity Index," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 19-37.
    11. Bart Keijsers & Bart Diris & Erik Kole, 2018. "Cyclicality in losses on bank loans," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 533-552, June.
    12. Jushan Bai & Serena Ng, 2021. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
    13. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    14. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    15. T.P. Koirala Ph.D., 2013. "Time-varying Parameters of Inflation Model in Nepal: State Space Modeling," NRB Working Paper 16/2013, Nepal Rastra Bank, Research Department.
    16. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    17. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    18. André Nunes Maranhão & Nicole Rennó Castro, 2023. "Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts," Empirical Economics, Springer, vol. 65(4), pages 1543-1578, October.
    19. Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2010. "Nowcasting," Working Paper Series 1275, European Central Bank.
    20. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2647-2653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.