IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i17p1845-1854.html
   My bibliography  Save this article

The variance of partial sums of strong near-epoch dependent variables

Author

Listed:
  • Qiu, Jin
  • Lin, Zhengyan

Abstract

In this paper, we discuss the lower bound for the variance of partial sums of strong near-epoch dependent variables under quite weak conditions. By suitably applying this result, we derive the limit behavior of the variance of the partial sums, which is especially useful in studying the large sample properties for econometric time series models with strong near-epoch dependent innovations.

Suggested Citation

  • Qiu, Jin & Lin, Zhengyan, 2006. "The variance of partial sums of strong near-epoch dependent variables," Statistics & Probability Letters, Elsevier, vol. 76(17), pages 1845-1854, November.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:17:p:1845-1854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00150-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(3), pages 353-367, June.
    2. Davidson, James, 2002. "Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 243-269, February.
    3. Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(3), pages 313-329, September.
    4. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lixiong & Lee, Chingnun & Shie, Fu Shuen, 2014. "How close a relationship does a capital market have with other markets? A reexamination based on the equal variance test," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 198-226.
    2. Calhoun, Gray, 2014. "Block Bootstrap Consistency Under Weak Assumptions," Staff General Research Papers Archive 34313, Iowa State University, Department of Economics.
    3. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    4. Davidson, James, 2002. "Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 243-269, February.
    5. Gençay, Ramazan & Signori, Daniele, 2015. "Multi-scale tests for serial correlation," Journal of Econometrics, Elsevier, vol. 184(1), pages 62-80.
    6. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    7. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    8. George Kapetanios & Zacharias Psaradakis, 2016. "Semiparametric Sieve-Type Generalized Least Squares Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 951-985, June.
    9. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    10. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    11. Mynbayev, Kairat & Darkenbayeva, Gulsim, 2019. "Analyzing variance in central limit theorems," MPRA Paper 101685, University Library of Munich, Germany.
    12. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    13. Zhang, Rongmao & Chan, Ngai Hang, 2018. "Portmanteau-type tests for unit-root and cointegration," Journal of Econometrics, Elsevier, vol. 207(2), pages 307-324.
    14. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    15. Jonathan B. Hill, 2005. "On Tail Index Estimation for Dependent, Heterogenous Data," Econometrics 0505005, University Library of Munich, Germany, revised 24 Mar 2006.
    16. Davidson, James, 2002. "A model of fractional cointegration, and tests for cointegration using the bootstrap," Journal of Econometrics, Elsevier, vol. 110(2), pages 187-212, October.
    17. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    18. Jonathan Hill, 2012. "Dependence and stochastic limit theory (in Russian)," Quantile, Quantile, issue 10, pages 1-31, December.
    19. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    20. Clark, Todd E. & McCracken, Michael W., 2012. "In-sample tests of predictive ability: A new approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:17:p:1845-1854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.