IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i15p1641-1646.html
   My bibliography  Save this article

Some properties of misspecified additive hazards models

Author

Listed:
  • Hattori, Satoshi

Abstract

Lin and Ying [1994. Semiparametric analysis of the additive risk model. Biometrika 81, 61-71] proposed a simple inference procedure for the additive hazards model. In this article, it is shown that their estimator provides valid treatment comparison in randomized clinical trials even if misspecified and is consistent even if independent covariates are mismodeled.

Suggested Citation

  • Hattori, Satoshi, 2006. "Some properties of misspecified additive hazards models," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1641-1646, September.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1641-1646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00118-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. G. DiRienzo & S. W. Lagakos, 2001. "Effects of model misspecification on tests of no randomized treatment effect arising from Cox’s proportional hazards model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 745-757.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hattori, Satoshi, 2012. "Testing the no-treatment effect based on a possibly misspecified accelerated failure time model," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 371-377.
    2. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    2. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    3. Clelia Di Serio & Yosef Rinott & Marco Scarsini, 2007. "Simpson’s Paradox for the Cox Model," Discussion Paper Series dp441, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Clelia Di Serio & Yosef Rinott & Marco Scarsini, 2009. "Simpson's Paradox in Survival Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 463-480, September.
    5. Hattori, Satoshi, 2012. "Testing the no-treatment effect based on a possibly misspecified accelerated failure time model," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 371-377.
    6. Jane Paik Kim, 2013. "A Note on Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models," Biometrics, The International Biometric Society, vol. 69(1), pages 282-289, March.
    7. Paul Gustafson, 2007. "On Robustness and Model Flexibility in Survival Analysis: Transformed Hazard Models and Average Effects," Biometrics, The International Biometric Society, vol. 63(1), pages 69-77, March.
    8. Ting Ye & Jun Shao, 2020. "Robust tests for treatment effect in survival analysis under covariate‐adaptive randomization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1301-1323, December.
    9. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1641-1646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.