IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v72y2005i3p237-247.html
   My bibliography  Save this article

Information criterion for Gaussian change-point model

Author

Listed:
  • Ninomiya, Yoshiyuki

Abstract

AIC-type information criterion is generally estimated by the bias-corrected maximum log-likelihood. In regular models, the bias can be estimated by p, where p is the number of parameters. The present paper considers the AIC-type information criterion for change-point models which are not regular, the bias of which will not be the same as for regular models. The bias is shown to depend on the expected maximum of a random walk with negative drift. Furthermore, it is shown that by using an approximation to a Brownian motion, the evaluated bias is given by 3m+pm (not m+pm), where m is the number of change-points and pm is the number of regular parameters, which differs from regular models.

Suggested Citation

  • Ninomiya, Yoshiyuki, 2005. "Information criterion for Gaussian change-point model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 237-247, May.
  • Handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:237-247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00034-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    2. Stryhn, Henrik, 1996. "The location of the maximum of asymmetric two-sided Brownian motion with triangular drift," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 279-284, September.
    3. Lee, Chung-Bow, 1995. "Estimating the number of change points in a sequence of independent normal random variables," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 241-248, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Shen, Gang, 2013. "On empirical likelihood inference of a change-point," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1662-1668.
    3. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    4. Erhard Reschenhofer & David Preinerstorfer & Lukas Steinberger, 2013. "Non-monotonic penalizing for the number of structural breaks," Computational Statistics, Springer, vol. 28(6), pages 2585-2598, December.
    5. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    6. Chulwoo Han & Abderrahim Taamouti, 2017. "Partial Structural Break Identification," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(2), pages 145-164, April.
    7. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    8. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    9. Yoshiyuki Ninomiya, 2015. "Change-point model selection via AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 943-961, October.
    10. Yoshiyuki Ninomiya & Atsushi Yoshimoto, 2008. "Statistical Method for Detecting Structural Change in the Growth Process," Biometrics, The International Biometric Society, vol. 64(1), pages 46-53, March.
    11. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Yoshiyuki Ninomiya, 2015. "Change-point model selection via AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 943-961, October.
    3. Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.
    4. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    5. Lee, Chung-Bow, 1996. "Nonparametric multiple change-point estimators," Statistics & Probability Letters, Elsevier, vol. 27(4), pages 295-304, May.
    6. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    7. Kühn, Christoph, 2001. "An estimator of the number of change points based on a weak invariance principle," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 189-196, January.
    8. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    9. Gil-Alana, Luis A. & Dadgar, Yadollah & Nazari, Rouhollah, 2020. "An analysis of the OPEC and non-OPEC position in the World Oil Market: A fractionally integrated approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    11. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    12. Kayhan, Selim & Adiguzel, Uğur & Bayat, Tayfur & Lebe, Fuat, 2010. "Causality Relationship between Real GDP and Electricity Consumption in Romania (2001-2010)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 169-183, December.
    13. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    14. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    15. Jamel JOUINI & Mohamed BOUTAHAR, 2007. "wrong estimation of the true number of shifts in structural break models: Theoretical and numerical evidence," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    16. Perron, Pierre, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837, Décembre.
    17. Sen, Rituparna & Hsieh, Fushing, 2009. "A note on testing regime switching assumption based on recurrence times," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2443-2450, December.
    18. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    19. Lopcu, Kenan & Dülger, Fikret & Burgaç, Almıla, 2013. "Relative productivity increases and the appreciation of the Turkish lira," Economic Modelling, Elsevier, vol. 35(C), pages 614-621.
    20. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:237-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.