IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i3p147-159.html
   My bibliography  Save this article

Censoring estimators of a positive tail index

Author

Listed:
  • Gomes, M. Ivette
  • Oliveira, Orlando

Abstract

In this paper, and in the context of regularly varying tails, we analyse some variants of a maximum likelihood estimator of a positive tail index [gamma], under a type II censoring scheme. These estimators are compared with the Hill estimator, for a Fréchet model and by means of a Monte Carlo simulation. Asymptotic normality of the estimators is derived, and a robustness simulation study of the estimators is undertaken.

Suggested Citation

  • Gomes, M. Ivette & Oliveira, Orlando, 2003. "Censoring estimators of a positive tail index," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 147-159, November.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:147-159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00211-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    2. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beirlant, J. & Maribe, G. & Verster, A., 2018. "Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 114-122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fendel, Ralf & Neumann, Christian, 2021. "Tail risk in the European sovereign bond market during the financial crises: Detecting the influence of the European Central Bank," Global Finance Journal, Elsevier, vol. 50(C).
    2. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    3. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    4. A. Dematteo & S. Clémençon, 2016. "On tail index estimation based on multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 152-176, March.
    5. Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.
    6. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    7. Li, Deyuan & Peng, Liang, 2010. "Comparing extreme models when the sign of the extreme value index is known," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 739-746, April.
    8. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    9. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    10. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    11. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    12. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    13. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    14. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    15. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    16. Haeusler, E. & Segers, J., 2005. "Assessing Confidence Intervals for the Tail Index by Edgeworth Expansions for the Hill Estimator," Other publications TiSEM e635c476-8fa8-4f16-8760-2, Tilburg University, School of Economics and Management.
    17. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    18. Beirlant, J. & Joossens, E. & Segers, J., 2005. "Unbiased Tail Estimation by an Extension of the Generalized Pareto Distribution," Other publications TiSEM cfb08408-0775-4936-8f1f-b, Tilburg University, School of Economics and Management.
    19. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    20. Jon Danielsson & Lerby Ergun & Casper G. de Vries, 2018. "Challenges in Implementing Worst-Case Analysis," Staff Working Papers 18-47, Bank of Canada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:147-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.