IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v63y2003i4p361-365.html
   My bibliography  Save this article

Benford's law for exponential random variables

Author

Listed:
  • Engel, Hans-Andreas
  • Leuenberger, Christoph

Abstract

Benford's law assigns the probability log10(1+1/d) for finding a number starting with specific significant digit d. We show that exponentially distributed numbers obey this law approximatively, i.e., within bounds of 0.03.

Suggested Citation

  • Engel, Hans-Andreas & Leuenberger, Christoph, 2003. "Benford's law for exponential random variables," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 361-365, July.
  • Handle: RePEc:eee:stapro:v:63:y:2003:i:4:p:361-365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00101-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schräpler Jörg-Peter, 2011. "Benford’s Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP)," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 685-718, October.
    2. Bormashenko, Ed. & Shulzinger, E. & Whyman, G. & Bormashenko, Ye., 2016. "Benford’s law, its applicability and breakdown in the IR spectra of polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 524-529.
    3. Whyman, G. & Ohtori, N. & Shulzinger, E. & Bormashenko, Ed., 2016. "Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 595-601.
    4. Dlugosz, Stephan & Müller-Funk, Ulrich, 2012. "Ziffernanalyse zur Betrugserkennung in Finanzverwaltungen: Prüfung von Kassenbelegen," Arbeitsberichte des Instituts für Wirtschaftsinformatik 133, University of Münster, Department of Information Systems.
    5. Lasse Pröger & Paul Griesberger & Klaus Hackländer & Norbert Brunner & Manfred Kühleitner, 2021. "Benford’s Law for Telemetry Data of Wildlife," Stats, MDPI, vol. 4(4), pages 1-7, November.
    6. Katherine M. Anderson & Kevin Dayaratna & Drew Gonshorowski & Steven J. Miller, 2022. "A New Benford Test for Clustered Data with Applications to American Elections," Stats, MDPI, vol. 5(3), pages 1-15, August.
    7. Don Lemons & Nathan Lemons & William Peter, 2021. "First Digit Oscillations," Stats, MDPI, vol. 4(3), pages 1-7, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:63:y:2003:i:4:p:361-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.