IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v63y2003i1p49-59.html
   My bibliography  Save this article

Robust estimation of nonlinear regression with autoregressive errors

Author

Listed:
  • Sinha, Sanjoy K.
  • Field, Christopher A.
  • Smith, Bruce

Abstract

Generalized M (or GM) estimation has been extended to the case of a nonlinear regression model with autoregressive and heteroscedastic errors. The robustness properties of the GM estimators have been investigated based on the time-series analog of Hampel's influence function. The asymptotic properties of these estimators have been studied in some detail.

Suggested Citation

  • Sinha, Sanjoy K. & Field, Christopher A. & Smith, Bruce, 2003. "Robust estimation of nonlinear regression with autoregressive errors," Statistics & Probability Letters, Elsevier, vol. 63(1), pages 49-59, May.
  • Handle: RePEc:eee:stapro:v:63:y:2003:i:1:p:49-59
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00052-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domowitz, Ian & White, Halbert, 1982. "Misspecified models with dependent observations," Journal of Econometrics, Elsevier, vol. 20(1), pages 35-58, October.
    2. Koul, Hira L. & Zhu, Zhiwei, 1995. "Bahadur-Kiefer representations for GM-estimators in autoregression models," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 167-189, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Wang, 2024. "Nonlinear kernel mode‐based regression for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 189-213, March.
    2. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.
    3. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedikt M. Potscher & Ingmar R. Prucha, 1994. "On the Formulation of Uniform Laws of Large Numbers: A Truncation Approach," NBER Technical Working Papers 0085, National Bureau of Economic Research, Inc.
    2. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    3. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Shumway, C. Richard & Davis, George C., 2001. "Does consistent aggregation really matter?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), pages 1-34.
    5. David F. Hendry, 2013. "Econometric Modelling: The ‘Consumption Function’ In Retrospect," Scottish Journal of Political Economy, Scottish Economic Society, vol. 60(5), pages 495-522, November.
    6. Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
    7. Domowitz, Ian & Elbadawi, Ibrahim, 1987. "An error-correction approach to money demand : The case of Sudan," Journal of Development Economics, Elsevier, vol. 26(2), pages 257-275, August.
    8. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    9. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    10. Broersma, L., 1992. "Profits and employment in the United States 1970-1991," Serie Research Memoranda 0039, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    11. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    12. Choi, Hwan-sik, 2016. "Information theory for maximum likelihood estimation of diffusion models," Journal of Econometrics, Elsevier, vol. 191(1), pages 110-128.
    13. Cheng, Fuxia, 2024. "The integrated absolute error of the kernel error distribution estimator in the first-order autoregression model," Statistics & Probability Letters, Elsevier, vol. 214(C).
    14. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    15. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    16. Francisco Blasques & Christian Francq & Sébastien Laurent, 2020. "A New Class of Robust Observation-Driven Models," Tinbergen Institute Discussion Papers 20-073/III, Tinbergen Institute.
    17. Fabio Canova & Christian Matthes, 2021. "A Composite Likelihood Approach for Dynamic Structural Models," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2447-2477.
    18. Henry Brady, 1989. "Factor and ideal point analysis for interpersonally incomparable data," Psychometrika, Springer;The Psychometric Society, vol. 54(2), pages 181-202, June.
    19. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    20. Godfrey, Leslie G, 1987. "Discriminating between Autocorrelation and Misspecification in," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 128-134, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:63:y:2003:i:1:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.