IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v57y2002i1p65-77.html
   My bibliography  Save this article

Coefficient constancy test in AR-ARCH models

Author

Listed:
  • Ha, Jeongcheol
  • Lee, Sangyeol

Abstract

In this article, we consider the problem of testing the coefficient constancy in the AR-ARCH model: yt=([phi]+bt)yt-1+[var epsilon]t, where [var epsilon]t=[eta]t-1[xi]t, [eta]t-1=([alpha]0+[alpha]1[var epsilon]t-12)1/2 and [xi]t are iid r.v.'s. Under the assumption that bt and [xi]t are Gaussian, a locally best invariant test is provided for testing whether bt are identically zero or not. Since the exact distribution of the test statistic is hard to obtain, its limiting distribution is investigated. It is shown that the test statistic depends upon the parameter estimators and is asymptotically normal under the null hypothesis.

Suggested Citation

  • Ha, Jeongcheol & Lee, Sangyeol, 2002. "Coefficient constancy test in AR-ARCH models," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 65-77, March.
  • Handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:65-77
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00051-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conlisk, John, 1976. "A Further Note on Stability in a Random Coefficient Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(3), pages 759-764, October.
    2. Ramanathan, R. V. & Rajarshi, M. B., 1994. "Rank tests for testing the randomness of autoregressive coefficients," Statistics & Probability Letters, Elsevier, vol. 21(2), pages 115-120, September.
    3. McCabe,B.P.M. & Tremayne,A.R., 1995. "Testing a Time-Series for Difference Stationarity," Cambridge Working Papers in Economics 9420, Faculty of Economics, University of Cambridge.
    4. Conlisk, John, 1974. "Stability in a Random Coefficient Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(2), pages 529-533, June.
    5. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    6. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    7. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    8. Tanaka, Katsuto, 1983. "Non-Normality of the Lagrange Multiplier Statistic for Testing the Constancy of Regression Coefficients," Econometrica, Econometric Society, vol. 51(5), pages 1577-1582, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    2. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
    5. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    6. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    7. LINTON, Olivier & PERRON, Benoît, 1999. "The Shape of the Risk Premium: Evidence from a Semiparametric Garch Model," Cahiers de recherche 9911, Universite de Montreal, Departement de sciences economiques.
    8. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    9. Abdelhakim Aknouche, 2012. "Multistage weighted least squares estimation of ARCH processes in the stable and unstable cases," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 241-256, October.
    10. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    11. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    12. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    13. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    14. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    15. HAFNER, Christian & PREMINGER, Arie, 2016. "On Asymptotic Theory for ARCH(infinite) Models," LIDAM Discussion Papers CORE 2016030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    17. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
    18. Hira Koul & Nao Mimoto, 2012. "A goodness-of-fit test for GARCH innovation density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 127-149, January.
    19. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    20. Berkes, István & Horváth, Lajos, 2003. "Limit results for the empirical process of squared residuals in GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 105(2), pages 271-298, June.
    21. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.