IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v56y2002i1p69-75.html
   My bibliography  Save this article

A new class of nearly self-financing strategies

Author

Listed:
  • Salopek, D. M.

Abstract

For a large class of models, we prove that the stop-loss start-gain trading strategy is as close to producing arbitrage as we please.

Suggested Citation

  • Salopek, D. M., 2002. "A new class of nearly self-financing strategies," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 69-75, January.
  • Handle: RePEc:eee:stapro:v:56:y:2002:i:1:p:69-75
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00173-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salopek, D. M., 1998. "Tolerance to arbitrage," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 217-230, August.
    2. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    3. Harrison, J Michael & Pitbladdo, Richard & Schaefer, Stephen M, 1984. "Continuous Price Processes in Frictionless Markets Have Infinite Variation," The Journal of Business, University of Chicago Press, vol. 57(3), pages 353-365, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.
    3. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    4. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    5. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    6. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    7. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    8. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    9. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
    10. Blenman, L. P. & Cantrell, R. S. & Fennell, R. E. & Parker, D. F. & Reneke, J. A. & Wang, L. F. S. & Womer, N. K., 1995. "An alternative approach to stochastic calculus for economic and financial models," Journal of Economic Dynamics and Control, Elsevier, vol. 19(3), pages 553-568, April.
    11. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    12. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    13. Alexander Schied, 2013. "Model-free CPPI," Papers 1305.5915, arXiv.org, revised Jan 2014.
    14. Jarrow, Robert & Protter, Philip, 2005. "Large traders, hidden arbitrage, and complete markets," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2803-2820, November.
    15. J. Scheinkman & W. Xiong, 2002. "Overconfidence, Short-Sale Constraints and Bubbles," Princeton Economic Theory Working Papers 98734966f1c1a57373801367f, David K. Levine.
    16. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    17. Joon Y. Park, 2004. "The Spatial Analysis of Time Series," Econometric Society 2004 North American Winter Meetings 595, Econometric Society.
    18. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    19. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    20. Azmoodeh Ehsan & Mishura Yuliya & Valkeila Esko, 2009. "On hedging European options in geometric fractional Brownian motion market model," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 129-144, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:56:y:2002:i:1:p:69-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.