IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v55y2001i4p367-376.html
   My bibliography  Save this article

The best constant in the Rosenthal inequality for nonnegative random variables

Author

Listed:
  • Ibragimov, R.
  • Sharakhmetov, Sh.

Abstract

In the present paper, we obtain the explicit expression for the best constant in the Rosenthal inequality for nonnegative random variables.

Suggested Citation

  • Ibragimov, R. & Sharakhmetov, Sh., 2001. "The best constant in the Rosenthal inequality for nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 367-376, December.
  • Handle: RePEc:eee:stapro:v:55:y:2001:i:4:p:367-376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00134-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan F. Karr, 1983. "Extreme Points of Certain Sets of Probability Measures, with Applications," Mathematics of Operations Research, INFORMS, vol. 8(1), pages 74-85, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Yao-Feng & Tian, Fan-Ji, 2003. "On the Rosenthal's inequality for locally square integrable martingales," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 107-116, March.
    2. Ruzankin, P.S., 2014. "On Cox–Kemperman moment inequalities for independent centered random variables," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 80-84.
    3. Anupam Gupta & Amit Kumar & Viswanath Nagarajan & Xiangkun Shen, 2021. "Stochastic Load Balancing on Unrelated Machines," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 115-133, February.
    4. Ibragimov, Marat & Ibragimov, Rustam, 2008. "Optimal constants in the Rosenthal inequality for random variables with zero odd moments," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 186-189, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    2. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    3. Pertaia, Giorgi & Prokhorov, Artem & Uryasev, Stan, 2022. "A new approach to credit ratings," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Iosif Pinelis, 2016. "On the extreme points of moments sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 325-349, June.
    5. Juan González-Hernández & César Villarreal, 2011. "Optimal policies for constrained average-cost Markov decision processes," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 107-120, July.
    6. Donald Brown & Rustam Ibragimov & Johan Walden, 2015. "Bounds for path-dependent options," Annals of Finance, Springer, vol. 11(3), pages 433-451, November.
    7. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    8. Steftcho P. Dokov & David P. Morton, 2005. "Second-Order Lower Bounds on the Expectation of a Convex Function," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 662-677, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:4:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.