IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v104y2003i1p107-116.html
   My bibliography  Save this article

On the Rosenthal's inequality for locally square integrable martingales

Author

Listed:
  • Ren, Yao-Feng
  • Tian, Fan-Ji

Abstract

Moment inequalities for locally square integrable martingales are considered. The growth rates of the constants in Rosenthal's inequality for locally square integrable martingales and Burkholder-Gundy inequality for martingales with symmetric jumps are given.

Suggested Citation

  • Ren, Yao-Feng & Tian, Fan-Ji, 2003. "On the Rosenthal's inequality for locally square integrable martingales," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 107-116, March.
  • Handle: RePEc:eee:spapps:v:104:y:2003:i:1:p:107-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00251-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibragimov, R. & Sharakhmetov, Sh., 2001. "The best constant in the Rosenthal inequality for nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 367-376, December.
    2. Ren, Yao-Feng & Liang, Han-Ying, 2001. "On the best constant in Marcinkiewicz-Zygmund inequality," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 227-233, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balan, Raluca M. & Ndongo, Cheikh B., 2016. "Intermittency for the wave equation with Lévy white noise," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 214-223.
    2. Lee, Chihoon & Weerasinghe, Ananda, 2011. "Convergence of a queueing system in heavy traffic with general patience-time distributions," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2507-2552, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibragimov, Marat & Ibragimov, Rustam, 2008. "Optimal constants in the Rosenthal inequality for random variables with zero odd moments," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 186-189, February.
    2. Ferger, Dietmar, 2014. "Optimal constants in the Marcinkiewicz–Zygmund inequalities," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 96-101.
    3. Emmanuel Rio, 2009. "Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 146-163, March.
    4. Cloez, Bertrand & Corujo, Josué, 2022. "Uniform in time propagation of chaos for a Moran model," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 251-285.
    5. Crisan, D. & Li, K., 2015. "Generalised particle filters with Gaussian mixtures," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2643-2673.
    6. Ruzankin, P.S., 2014. "On Cox–Kemperman moment inequalities for independent centered random variables," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 80-84.
    7. Li, Bainian & Zhang, Kongsheng & Wu, Libin, 2011. "A sharp inequality for martingales and its applications," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1260-1266, August.
    8. Ramazan Kadiev & Arcady Ponosov, 2018. "Lyapunov Stability of the Generalized Stochastic Pantograph Equation," Journal of Mathematics, Hindawi, vol. 2018, pages 1-9, June.
    9. Anupam Gupta & Amit Kumar & Viswanath Nagarajan & Xiangkun Shen, 2021. "Stochastic Load Balancing on Unrelated Machines," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 115-133, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:104:y:2003:i:1:p:107-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.