IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v50y2000i3p273-278.html
   My bibliography  Save this article

A note on almost sure exponential stability for stochastic partial functional differential equations

Author

Listed:
  • Liu, Kai
  • Truman, Aubrey

Abstract

In a recent paper, Taniguchi (Stochastic Anal. Appl. 16 (5) (1998) 965-975) investigated the almost sure exponential stability of the mild solutions of a class of stochastic partial functional differential equations. Precisely, as small delay interval assumption is imposed, sufficient conditions are obtained there to ensure the almost sure exponential stability of the mild solutions of the given stochastic systems. Unfortunately, the main results derived by him are somewhat restrictive to be applied for practical purposes. In the note we shall prove that for a class of stochastic functional differential equations the small delay interval assumption imposed there is actually unnecessary and can be removed.

Suggested Citation

  • Liu, Kai & Truman, Aubrey, 2000. "A note on almost sure exponential stability for stochastic partial functional differential equations," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 273-278, November.
  • Handle: RePEc:eee:stapro:v:50:y:2000:i:3:p:273-278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00103-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieye, Moustapha & Diop, Mamadou Abdoul & Ezzinbi, Khalil, 2017. "On exponential stability of mild solutions for some stochastic partial integrodifferential equations," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 61-76.
    2. Chen, Huabin, 2010. "Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 50-56, January.
    3. Li, Dingshi & Fan, Xiaoming, 2017. "Exponential stability of impulsive stochastic partial differential equations with delays," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 185-192.
    4. Sakthivel, R. & Luo, J., 2009. "Asymptotic stability of nonlinear impulsive stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1219-1223, May.
    5. Huabin Chen, 2015. "The existence and exponential stability for neutral stochastic partial differential equations with infinite delay and poisson jump," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(2), pages 197-217, April.
    6. Cui, Jing & Yan, Litan & Sun, Xichao, 2011. "Exponential stability for neutral stochastic partial differential equations with delays and Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1970-1977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:50:y:2000:i:3:p:273-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.