IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v126y2017icp185-192.html
   My bibliography  Save this article

Exponential stability of impulsive stochastic partial differential equations with delays

Author

Listed:
  • Li, Dingshi
  • Fan, Xiaoming

Abstract

In this paper, we are concerned with the exponential stability problem of impulsive control stochastic partial differential equations with delays. By employing the formula for the variation of parameters and inequality technique, several criteria on exponential stability are derived and the exponential convergence rate is estimated. Some examples are given to illustrate the theoretical results and to show that the criteria can be applied to stabilize the continuous system with delays, which may be unstable.

Suggested Citation

  • Li, Dingshi & Fan, Xiaoming, 2017. "Exponential stability of impulsive stochastic partial differential equations with delays," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 185-192.
  • Handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:185-192
    DOI: 10.1016/j.spl.2017.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huabin, 2010. "Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 50-56, January.
    2. Liu, Kai & Truman, Aubrey, 2000. "A note on almost sure exponential stability for stochastic partial functional differential equations," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 273-278, November.
    3. Long, Shujun & Teng, Lingying & Xu, Daoyi, 2012. "Global attracting set and stability of stochastic neutral partial functional differential equations with impulses," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1699-1709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marino, L. & Menozzi, S., 2023. "Weak well-posedness for a class of degenerate Lévy-driven SDEs with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 106-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huabin Chen, 2015. "The existence and exponential stability for neutral stochastic partial differential equations with infinite delay and poisson jump," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(2), pages 197-217, April.
    2. Jiang, Feng & Yang, Hua & Shen, Yi, 2016. "A note on exponential stability for second-order neutral stochastic partial differential equations with infinite delays in the presence of impulses," Applied Mathematics and Computation, Elsevier, vol. 287, pages 125-133.
    3. Dieye, Moustapha & Diop, Mamadou Abdoul & Ezzinbi, Khalil, 2017. "On exponential stability of mild solutions for some stochastic partial integrodifferential equations," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 61-76.
    4. Chen, Huabin, 2010. "Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 50-56, January.
    5. Sakthivel, R. & Luo, J., 2009. "Asymptotic stability of nonlinear impulsive stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1219-1223, May.
    6. Long, Shujun & Teng, Lingying & Xu, Daoyi, 2012. "Global attracting set and stability of stochastic neutral partial functional differential equations with impulses," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1699-1709.
    7. Chen, Guiling & van Gaans, Onno & Lunel, Sjoerd Verduyn, 2018. "Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 7-18.
    8. Cui, Jing & Yan, Litan & Sun, Xichao, 2011. "Exponential stability for neutral stochastic partial differential equations with delays and Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1970-1977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:185-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.