IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v50y2000i1p97-103.html
   My bibliography  Save this article

A pair of estimating equations for a mean vector

Author

Listed:
  • Yanagimoto, Takemi

Abstract

Consider a class of estimators of a mean vector, indexed by a parameter. We introduce a pair of estimating equations for the parameter and the variance in the normal distribution. The equations provide us with an interpretation of the empirical Bayes method for smoothing and the James-Stein estimator. They can also be applied to various methods such as the S function lowess, the ridge estimator and the method of moving average. An extension to the non-Gaussian case is also discussed.

Suggested Citation

  • Yanagimoto, Takemi, 2000. "A pair of estimating equations for a mean vector," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 97-103, October.
  • Handle: RePEc:eee:stapro:v:50:y:2000:i:1:p:97-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00092-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiller, Robert J, 1973. "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, Econometric Society, vol. 41(4), pages 775-788, July.
    2. Takemi Yanagimoto, 1994. "The Kullback-Leibler risk of the Stein estimator and the conditional MLE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 29-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    2. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    3. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    4. Nobuhisa Kashiwagi, 1993. "On use of the Kalman filter for spatial smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 21-34, March.
    5. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    6. Benjamin M. Friedman & V. Vance Roley, 1977. "Identifying Identical Distributed Lag Structures by the Use of Prior SumConstraints," NBER Working Papers 0179, National Bureau of Economic Research, Inc.
    7. Priya Ranjan & Justin L. Tobias, 2007. "Bayesian inference for the gravity model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 817-838.
    8. Mark Gersovitz & James G. MacKinnon, 1977. "Seasonality in Regression: An Application of Smoothness Priors," Working Paper 257, Economics Department, Queen's University.
    9. Dew-Becker, Ian & Nathanson, Charles G., 2019. "Directed attention and nonparametric learning," Journal of Economic Theory, Elsevier, vol. 181(C), pages 461-496.
    10. Venkateswaran, Meenakshi & Kinnucan, Henry W. & Chang, Hui-Shung, 1993. "Modeling Advertising Carryover in Fluid Milk: Comparison of Alternative Lag Specifications," Agricultural and Resource Economics Review, Cambridge University Press, vol. 22(1), pages 10-19, April.
    11. Allen McDowell, 2004. "From the help desk: Polynomial distributed lag models," Stata Journal, StataCorp LP, vol. 4(2), pages 180-189, June.
    12. Thirtle, C. & Bottomley, P., 1988. "Explaining Total Factor Productivity Change: Returns to R & D in U.K. Agricultural Research," Manchester Working Papers in Agricultural Economics 232809, University of Manchester, School of Economics, Agricultural Economics Department.
    13. Onishi, Haruo, 1995. "A user-knowledge-based variable selection method for limited information maximum likelihood using principal components," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 379-399, April.
    14. R. Pace & Shuang Zhu, 2012. "Separable spatial modeling of spillovers and disturbances," Journal of Geographical Systems, Springer, vol. 14(1), pages 75-90, January.
    15. Richard Berner, 1976. "Total import and gross output demands in the context of a multisector general equilibrium model," International Finance Discussion Papers 88, Board of Governors of the Federal Reserve System (U.S.).
    16. Palm, Franz & Zellner, Arnold, 1981. "Large sample estimation and testing procedures for dynamic equation systems," Journal of Econometrics, Elsevier, vol. 17(1), pages 131-138, September.
    17. Robert J. Shiller, 1975. "Alternative Prior Representations of Smoothness for Distributed Lag Estimation," NBER Working Papers 0089, National Bureau of Economic Research, Inc.
    18. Wilson, John F & Takacs, Wendy E, 1979. "Differential Responses to Price and Exchange Rate Influences in the Foreign Trade of Selected Industrial Countries," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 267-279, May.
    19. Mario Arturo Ruiz Estrada & Evangelos Koutronas & Ross Knippenberg, 2016. "The Mega Distributed Lag Model," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 10(2), June.
    20. Parrott, Scott D. & Eastwood, David B., 1998. "Incorporating Seasonality, Product Volume, And Shiller Lags Into A Price Linkage Model," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20837, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:50:y:2000:i:1:p:97-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.